|
@@ -0,0 +1,330 @@
|
|
|
|
|
+import math
|
|
|
|
|
+import torch
|
|
|
|
|
+import torch.nn as nn
|
|
|
|
|
+import torch.nn.functional as F
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+# -------------------- Detection Pred Layer --------------------
|
|
|
|
|
+## Single-level pred layer
|
|
|
|
|
+class DetPredLayer(nn.Module):
|
|
|
|
|
+ def __init__(self,
|
|
|
|
|
+ cls_dim :int = 256,
|
|
|
|
|
+ reg_dim :int = 256,
|
|
|
|
|
+ stride :int = 32,
|
|
|
|
|
+ num_classes :int = 80,
|
|
|
|
|
+ num_coords :int = 4):
|
|
|
|
|
+ super().__init__()
|
|
|
|
|
+ # --------- Basic Parameters ----------
|
|
|
|
|
+ self.stride = stride
|
|
|
|
|
+ self.cls_dim = cls_dim
|
|
|
|
|
+ self.reg_dim = reg_dim
|
|
|
|
|
+ self.num_classes = num_classes
|
|
|
|
|
+ self.num_coords = num_coords
|
|
|
|
|
+
|
|
|
|
|
+ # --------- Network Parameters ----------
|
|
|
|
|
+ self.cls_pred = nn.Conv2d(cls_dim, num_classes, kernel_size=1)
|
|
|
|
|
+ self.reg_pred = nn.Conv2d(reg_dim, num_coords, kernel_size=1, groups=4)
|
|
|
|
|
+
|
|
|
|
|
+ self.init_bias()
|
|
|
|
|
+
|
|
|
|
|
+ def init_bias(self):
|
|
|
|
|
+ # cls pred bias
|
|
|
|
|
+ b = self.cls_pred.bias.view(1, -1)
|
|
|
|
|
+ b.data.fill_(math.log(5 / self.num_classes / (640. / self.stride) ** 2))
|
|
|
|
|
+ self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
|
|
|
|
+ # reg pred bias
|
|
|
|
|
+ b = self.reg_pred.bias.view(-1, )
|
|
|
|
|
+ b.data.fill_(1.0)
|
|
|
|
|
+ self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
|
|
|
|
+ w = self.reg_pred.weight
|
|
|
|
|
+ w.data.fill_(0.)
|
|
|
|
|
+ self.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
|
|
|
|
|
+
|
|
|
|
|
+ def generate_anchors(self, fmp_size):
|
|
|
|
|
+ """
|
|
|
|
|
+ fmp_size: (List) [H, W]
|
|
|
|
|
+ """
|
|
|
|
|
+ # generate grid cells
|
|
|
|
|
+ fmp_h, fmp_w = fmp_size
|
|
|
|
|
+ anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
|
|
|
|
|
+ # [H, W, 2] -> [HW, 2]
|
|
|
|
|
+ anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
|
|
|
|
|
+ anchors += 0.5 # add center offset
|
|
|
|
|
+ anchors *= self.stride
|
|
|
|
|
+
|
|
|
|
|
+ return anchors
|
|
|
|
|
+
|
|
|
|
|
+ def forward(self, cls_feat, reg_feat):
|
|
|
|
|
+ # pred
|
|
|
|
|
+ cls_pred = self.cls_pred(cls_feat)
|
|
|
|
|
+ reg_pred = self.reg_pred(reg_feat)
|
|
|
|
|
+
|
|
|
|
|
+ # generate anchor boxes: [M, 4]
|
|
|
|
|
+ B, _, H, W = cls_pred.size()
|
|
|
|
|
+ fmp_size = [H, W]
|
|
|
|
|
+ anchors = self.generate_anchors(fmp_size)
|
|
|
|
|
+ anchors = anchors.to(cls_pred.device)
|
|
|
|
|
+ # stride tensor: [M, 1]
|
|
|
|
|
+ stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride
|
|
|
|
|
+
|
|
|
|
|
+ # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
|
|
|
|
|
+ cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
|
|
|
|
|
+ reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_coords)
|
|
|
|
|
+
|
|
|
|
|
+ # output dict
|
|
|
|
|
+ outputs = {"pred_cls": cls_pred, # List(Tensor) [B, M, C]
|
|
|
|
|
+ "pred_reg": reg_pred, # List(Tensor) [B, M, 4*(reg_max)]
|
|
|
|
|
+ "anchors": anchors, # List(Tensor) [M, 2]
|
|
|
|
|
+ "strides": self.stride, # List(Int) = [8, 16, 32]
|
|
|
|
|
+ "stride_tensor": stride_tensor # List(Tensor) [M, 1]
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ return outputs
|
|
|
|
|
+
|
|
|
|
|
+## Multi-scales pred layer
|
|
|
|
|
+class MSDetPredLayer(nn.Module):
|
|
|
|
|
+ def __init__(self,
|
|
|
|
|
+ cfg,
|
|
|
|
|
+ cls_dim,
|
|
|
|
|
+ reg_dim,
|
|
|
|
|
+ ):
|
|
|
|
|
+ super().__init__()
|
|
|
|
|
+ # --------- Basic Parameters ----------
|
|
|
|
|
+ self.cfg = cfg
|
|
|
|
|
+ self.cls_dim = cls_dim
|
|
|
|
|
+ self.reg_dim = reg_dim
|
|
|
|
|
+ self.reg_max = cfg.reg_max
|
|
|
|
|
+ self.num_levels = cfg.num_levels
|
|
|
|
|
+ self.out_stride = cfg.out_stride
|
|
|
|
|
+
|
|
|
|
|
+ # ----------- Network Parameters -----------
|
|
|
|
|
+ ## pred layers
|
|
|
|
|
+ self.multi_level_preds = nn.ModuleList(
|
|
|
|
|
+ [DetPredLayer(cls_dim = cls_dim,
|
|
|
|
|
+ reg_dim = reg_dim,
|
|
|
|
|
+ stride = cfg.out_stride[level],
|
|
|
|
|
+ num_classes = cfg.num_classes,
|
|
|
|
|
+ num_coords = cfg.reg_max * 4)
|
|
|
|
|
+ for level in range(cfg.num_levels)
|
|
|
|
|
+ ])
|
|
|
|
|
+ ## proj conv
|
|
|
|
|
+ proj_init = torch.arange(cfg.reg_max, dtype=torch.float)
|
|
|
|
|
+ self.proj_conv = nn.Conv2d(cfg.reg_max, 1, kernel_size=1, bias=False).requires_grad_(False)
|
|
|
|
|
+ self.proj_conv.weight.data[:] = nn.Parameter(proj_init.view([1, cfg.reg_max, 1, 1]), requires_grad=False)
|
|
|
|
|
+
|
|
|
|
|
+ def forward(self, cls_feats, reg_feats):
|
|
|
|
|
+ all_anchors = []
|
|
|
|
|
+ all_strides = []
|
|
|
|
|
+ all_cls_preds = []
|
|
|
|
|
+ all_reg_preds = []
|
|
|
|
|
+ all_box_preds = []
|
|
|
|
|
+ all_delta_preds = []
|
|
|
|
|
+ for level in range(self.num_levels):
|
|
|
|
|
+ # -------------- Single-level prediction --------------
|
|
|
|
|
+ outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
|
|
|
|
|
+
|
|
|
|
|
+ # -------------- Decode bbox --------------
|
|
|
|
|
+ B, M = outputs["pred_reg"].shape[:2]
|
|
|
|
|
+ # [B, M, 4*(reg_max)] -> [B, M, 4, reg_max]
|
|
|
|
|
+ delta_pred = outputs["pred_reg"].reshape([B, M, 4, self.reg_max])
|
|
|
|
|
+ # [B, M, 4, reg_max] -> [B, reg_max, 4, M]
|
|
|
|
|
+ delta_pred = delta_pred.permute(0, 3, 2, 1).contiguous()
|
|
|
|
|
+ # [B, reg_max, 4, M] -> [B, 1, 4, M]
|
|
|
|
|
+ delta_pred = self.proj_conv(F.softmax(delta_pred, dim=1))
|
|
|
|
|
+ # [B, 1, 4, M] -> [B, 4, M] -> [B, M, 4]
|
|
|
|
|
+ delta_pred = delta_pred.view(B, 4, M).permute(0, 2, 1).contiguous()
|
|
|
|
|
+ ## tlbr -> xyxy
|
|
|
|
|
+ x1y1_pred = outputs["anchors"][None] - delta_pred[..., :2] * self.out_stride[level]
|
|
|
|
|
+ x2y2_pred = outputs["anchors"][None] + delta_pred[..., 2:] * self.out_stride[level]
|
|
|
|
|
+ box_pred = torch.cat([x1y1_pred, x2y2_pred], dim=-1)
|
|
|
|
|
+
|
|
|
|
|
+ # collect results
|
|
|
|
|
+ all_cls_preds.append(outputs["pred_cls"])
|
|
|
|
|
+ all_reg_preds.append(outputs["pred_reg"])
|
|
|
|
|
+ all_box_preds.append(box_pred)
|
|
|
|
|
+ all_delta_preds.append(delta_pred)
|
|
|
|
|
+ all_anchors.append(outputs["anchors"])
|
|
|
|
|
+ all_strides.append(outputs["stride_tensor"])
|
|
|
|
|
+
|
|
|
|
|
+ # output dict
|
|
|
|
|
+ outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
|
|
|
|
|
+ "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
|
|
|
|
|
+ "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
|
|
|
|
|
+ "pred_delta": all_delta_preds, # List(Tensor) [B, M, 4]
|
|
|
|
|
+ "anchors": all_anchors, # List(Tensor) [M, 2]
|
|
|
|
|
+ "stride_tensor": all_strides, # List(Tensor) [M, 1]
|
|
|
|
|
+ "strides": self.out_stride, # List(Int) = [8, 16, 32]
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ return outputs
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+# -------------------- Segmentation Pred Layer --------------------
|
|
|
|
|
+## Single-level pred layer
|
|
|
|
|
+class SegPredLayer(nn.Module):
|
|
|
|
|
+ def __init__(self,
|
|
|
|
|
+ cls_dim :int = 256,
|
|
|
|
|
+ reg_dim :int = 256,
|
|
|
|
|
+ seg_dim :int = 256,
|
|
|
|
|
+ stride :int = 32,
|
|
|
|
|
+ num_classes :int = 80,
|
|
|
|
|
+ num_coords :int = 4,
|
|
|
|
|
+ num_masks :int = 1):
|
|
|
|
|
+ super().__init__()
|
|
|
|
|
+ # --------- Basic Parameters ----------
|
|
|
|
|
+ self.stride = stride
|
|
|
|
|
+ self.cls_dim = cls_dim
|
|
|
|
|
+ self.reg_dim = reg_dim
|
|
|
|
|
+ self.seg_dim = seg_dim
|
|
|
|
|
+ self.num_classes = num_classes
|
|
|
|
|
+ self.num_coords = num_coords
|
|
|
|
|
+ self.num_masks = num_masks
|
|
|
|
|
+
|
|
|
|
|
+ # --------- Network Parameters ----------
|
|
|
|
|
+ self.cls_pred = nn.Conv2d(cls_dim, num_classes, kernel_size=1)
|
|
|
|
|
+ self.reg_pred = nn.Conv2d(reg_dim, num_coords, kernel_size=1)
|
|
|
|
|
+ self.seg_pred = nn.Conv2d(seg_dim, num_masks, kernel_size=1)
|
|
|
|
|
+
|
|
|
|
|
+ self.init_bias()
|
|
|
|
|
+
|
|
|
|
|
+ def init_bias(self):
|
|
|
|
|
+ # cls pred bias
|
|
|
|
|
+ b = self.cls_pred.bias.view(1, -1)
|
|
|
|
|
+ b.data.fill_(math.log(5 / self.num_classes / (640. / self.stride) ** 2))
|
|
|
|
|
+ self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
|
|
|
|
+ # reg pred bias
|
|
|
|
|
+ b = self.reg_pred.bias.view(-1, )
|
|
|
|
|
+ b.data.fill_(1.0)
|
|
|
|
|
+ self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
|
|
|
|
+ w = self.reg_pred.weight
|
|
|
|
|
+ w.data.fill_(0.)
|
|
|
|
|
+ self.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
|
|
|
|
|
+ # seg pred bias
|
|
|
|
|
+ b = self.seg_pred.bias.view(-1, )
|
|
|
|
|
+ b.data.fill_(1.0)
|
|
|
|
|
+ self.seg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
|
|
|
|
+ w = self.seg_pred.weight
|
|
|
|
|
+ w.data.fill_(0.)
|
|
|
|
|
+ self.seg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
|
|
|
|
|
+
|
|
|
|
|
+ def generate_anchors(self, fmp_size):
|
|
|
|
|
+ """
|
|
|
|
|
+ fmp_size: (List) [H, W]
|
|
|
|
|
+ """
|
|
|
|
|
+ # generate grid cells
|
|
|
|
|
+ fmp_h, fmp_w = fmp_size
|
|
|
|
|
+ anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
|
|
|
|
|
+ # [H, W, 2] -> [HW, 2]
|
|
|
|
|
+ anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
|
|
|
|
|
+ anchors += 0.5 # add center offset
|
|
|
|
|
+ anchors *= self.stride
|
|
|
|
|
+
|
|
|
|
|
+ return anchors
|
|
|
|
|
+
|
|
|
|
|
+ def forward(self, cls_feat, reg_feat, seg_feat):
|
|
|
|
|
+ # pred
|
|
|
|
|
+ cls_pred = self.cls_pred(cls_feat)
|
|
|
|
|
+ reg_pred = self.reg_pred(reg_feat)
|
|
|
|
|
+ seg_pred = self.seg_pred(seg_feat)
|
|
|
|
|
+
|
|
|
|
|
+ # generate anchor boxes: [M, 4]
|
|
|
|
|
+ B, _, H, W = cls_pred.size()
|
|
|
|
|
+ fmp_size = [H, W]
|
|
|
|
|
+ anchors = self.generate_anchors(fmp_size)
|
|
|
|
|
+ anchors = anchors.to(cls_pred.device)
|
|
|
|
|
+ # stride tensor: [M, 1]
|
|
|
|
|
+ stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride
|
|
|
|
|
+
|
|
|
|
|
+ # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
|
|
|
|
|
+ cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
|
|
|
|
|
+ reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_coords)
|
|
|
|
|
+ seg_pred = seg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_masks)
|
|
|
|
|
+
|
|
|
|
|
+ # output dict
|
|
|
|
|
+ outputs = {"pred_cls": cls_pred, # List(Tensor) [B, M, Nc]
|
|
|
|
|
+ "pred_reg": reg_pred, # List(Tensor) [B, M, Na]
|
|
|
|
|
+ "pred_seg": seg_pred, # List(Tensor) [B, M, Nm]
|
|
|
|
|
+ "anchors": anchors, # List(Tensor) [M, 2]
|
|
|
|
|
+ "strides": self.stride, # List(Int) = [8, 16, 32]
|
|
|
|
|
+ "stride_tensor": stride_tensor # List(Tensor) [M, 1]
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ return outputs
|
|
|
|
|
+
|
|
|
|
|
+## Multi-level pred layer
|
|
|
|
|
+class RTCSegPredLayer(nn.Module):
|
|
|
|
|
+ def __init__(self,
|
|
|
|
|
+ cfg,
|
|
|
|
|
+ cls_dim,
|
|
|
|
|
+ reg_dim,
|
|
|
|
|
+ seg_dim,
|
|
|
|
|
+ ):
|
|
|
|
|
+ super().__init__()
|
|
|
|
|
+ # --------- Basic Parameters ----------
|
|
|
|
|
+ self.cfg = cfg
|
|
|
|
|
+ self.cls_dim = cls_dim
|
|
|
|
|
+ self.reg_dim = reg_dim
|
|
|
|
|
+ self.seg_dim = seg_dim
|
|
|
|
|
+
|
|
|
|
|
+ # ----------- Network Parameters -----------
|
|
|
|
|
+ ## pred layers
|
|
|
|
|
+ self.multi_level_preds = nn.ModuleList(
|
|
|
|
|
+ [SegPredLayer(cls_dim = cls_dim,
|
|
|
|
|
+ reg_dim = reg_dim,
|
|
|
|
|
+ seg_dim = seg_dim,
|
|
|
|
|
+ stride = cfg.out_stride[level],
|
|
|
|
|
+ num_classes = cfg.num_classes,
|
|
|
|
|
+ num_coords = cfg.reg_max * 4,
|
|
|
|
|
+ num_masks = cfg.mask_dim)
|
|
|
|
|
+ for level in range(cfg.num_levels)
|
|
|
|
|
+ ])
|
|
|
|
|
+ ## proj conv
|
|
|
|
|
+ proj_init = torch.arange(cfg.reg_max, dtype=torch.float)
|
|
|
|
|
+ self.proj_conv = nn.Conv2d(cfg.reg_max, 1, kernel_size=1, bias=False).requires_grad_(False)
|
|
|
|
|
+ self.proj_conv.weight.data[:] = nn.Parameter(proj_init.view([1, cfg.reg_max, 1, 1]), requires_grad=False)
|
|
|
|
|
+
|
|
|
|
|
+ def forward(self, cls_feats, reg_feats, seg_feats):
|
|
|
|
|
+ all_anchors = []
|
|
|
|
|
+ all_strides = []
|
|
|
|
|
+ all_cls_preds = []
|
|
|
|
|
+ all_reg_preds = []
|
|
|
|
|
+ all_box_preds = []
|
|
|
|
|
+ all_seg_preds = []
|
|
|
|
|
+ for level in range(self.cfg.num_levels):
|
|
|
|
|
+ # -------------- Single-level prediction --------------
|
|
|
|
|
+ outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level], seg_feats[level])
|
|
|
|
|
+
|
|
|
|
|
+ # -------------- Decode bbox --------------
|
|
|
|
|
+ B, M = outputs["pred_reg"].shape[:2]
|
|
|
|
|
+ # [B, M, 4*(reg_max)] -> [B, M, 4, reg_max]
|
|
|
|
|
+ delta_pred = outputs["pred_reg"].reshape([B, M, 4, self.cfg.reg_max])
|
|
|
|
|
+ # [B, M, 4, reg_max] -> [B, reg_max, 4, M]
|
|
|
|
|
+ delta_pred = delta_pred.permute(0, 3, 2, 1).contiguous()
|
|
|
|
|
+ # [B, reg_max, 4, M] -> [B, 1, 4, M]
|
|
|
|
|
+ delta_pred = self.proj_conv(F.softmax(delta_pred, dim=1))
|
|
|
|
|
+ # [B, 1, 4, M] -> [B, 4, M] -> [B, M, 4]
|
|
|
|
|
+ delta_pred = delta_pred.view(B, 4, M).permute(0, 2, 1).contiguous()
|
|
|
|
|
+ ## tlbr -> xyxy
|
|
|
|
|
+ x1y1_pred = outputs["anchors"][None] - delta_pred[..., :2] * self.cfg.out_stride[level]
|
|
|
|
|
+ x2y2_pred = outputs["anchors"][None] + delta_pred[..., 2:] * self.cfg.out_stride[level]
|
|
|
|
|
+ box_pred = torch.cat([x1y1_pred, x2y2_pred], dim=-1)
|
|
|
|
|
+
|
|
|
|
|
+ # collect results
|
|
|
|
|
+ all_cls_preds.append(outputs["pred_cls"])
|
|
|
|
|
+ all_reg_preds.append(outputs["pred_reg"])
|
|
|
|
|
+ all_seg_preds.append(outputs["pred_seg"])
|
|
|
|
|
+ all_box_preds.append(box_pred)
|
|
|
|
|
+ all_anchors.append(outputs["anchors"])
|
|
|
|
|
+ all_strides.append(outputs["stride_tensor"])
|
|
|
|
|
+
|
|
|
|
|
+ # output dict
|
|
|
|
|
+ outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
|
|
|
|
|
+ "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
|
|
|
|
|
+ "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
|
|
|
|
|
+ "pred_seg": all_seg_preds, # List(Tensor) [B, M, 4]
|
|
|
|
|
+ "anchors": all_anchors, # List(Tensor) [M, 2]
|
|
|
|
|
+ "stride_tensor": all_strides, # List(Tensor) [M, 1]
|
|
|
|
|
+ "strides": self.cfg.out_stride, # List(Int) = [8, 16, 32]
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ return outputs
|