| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 |
- import torch
- import torch.nn as nn
- try:
- from .rtcdet_basic import BasicConv, ElanLayer, MDown, ADown
- except:
- from rtcdet_basic import BasicConv, ElanLayer, MDown, ADown
- # ------------------ Basic functions ------------------
- class RTCBackbone(nn.Module):
- def __init__(self, cfg):
- super(RTCBackbone, self).__init__()
- # ------------------ Basic setting ------------------
- self.stage_depth = [round(nb * cfg.depth) for nb in cfg.stage_depth]
- self.stage_dims = [round(dim * cfg.width * cfg.ratio) if i == len(cfg.stage_dims) - 1
- else round(dim * cfg.width) for i, dim in enumerate(cfg.stage_dims)]
- self.pyramid_feat_dims = self.stage_dims[-3:]
-
- # ------------------ Model setting ------------------
- ## P1/2
- self.layer_1 = BasicConv(3, self.stage_dims[0], kernel_size=6, padding=2, stride=2,
- act_type=cfg.bk_act, norm_type=cfg.bk_norm, depthwise=cfg.bk_depthwise)
- # P2/4
- self.layer_2 = nn.Sequential(
- self.make_downsample_block(cfg, self.stage_dims[0], self.stage_dims[1]),
- self.make_stage_block(cfg, self.stage_dims[1], self.stage_dims[1], self.stage_depth[0])
- )
- # P3/8
- self.layer_3 = nn.Sequential(
- self.make_downsample_block(cfg, self.stage_dims[1], self.stage_dims[2]),
- self.make_stage_block(cfg, self.stage_dims[2], self.stage_dims[2], self.stage_depth[1])
- )
- # P4/16
- self.layer_4 = nn.Sequential(
- self.make_downsample_block(cfg, self.stage_dims[2], self.stage_dims[3]),
- self.make_stage_block(cfg, self.stage_dims[3], self.stage_dims[3], self.stage_depth[2])
- )
- # P5/32
- self.layer_5 = nn.Sequential(
- self.make_downsample_block(cfg, self.stage_dims[3], self.stage_dims[4]),
- self.make_stage_block(cfg, self.stage_dims[4], self.stage_dims[4], self.stage_depth[3])
- )
- # Initialize all layers
- self.init_weights()
-
- def init_weights(self):
- """Initialize the parameters."""
- for m in self.modules():
- if isinstance(m, torch.nn.Conv2d):
- m.reset_parameters()
- def make_downsample_block(self, cfg, in_dim, out_dim):
- if cfg.bk_ds_block == "conv":
- return BasicConv(in_dim, out_dim, kernel_size=3, padding=1, stride=2,
- act_type=cfg.bk_act, norm_type=cfg.bk_norm, depthwise=cfg.bk_depthwise)
- if cfg.bk_ds_block == "mdown":
- return MDown(in_dim, out_dim, cfg.bk_act, cfg.bk_norm, cfg.bk_depthwise)
- if cfg.bk_ds_block == "adown":
- return ADown(in_dim, out_dim, cfg.bk_act, cfg.bk_norm, cfg.bk_depthwise)
- if cfg.bk_ds_block == "maxpool":
- assert in_dim == out_dim
- return nn.MaxPool2d((2, 2), stride=2)
- else:
- raise NotImplementedError("Unknown fpn downsample block: {}".format(cfg.fpn_ds_block))
-
- def make_stage_block(self, cfg, in_dim, out_dim, stage_depth):
- if cfg.bk_block == "elan_layer":
- return ElanLayer(in_dim = in_dim,
- out_dim = out_dim,
- num_blocks = stage_depth,
- expansion = 0.5,
- shortcut = True,
- act_type = cfg.bk_act,
- norm_type = cfg.bk_norm,
- depthwise = cfg.bk_depthwise)
- else:
- raise NotImplementedError("Unknown stage block: {}".format(cfg.bk_block))
-
- def forward(self, x):
- c1 = self.layer_1(x)
- c2 = self.layer_2(c1)
- c3 = self.layer_3(c2)
- c4 = self.layer_4(c3)
- c5 = self.layer_5(c4)
- outputs = [c3, c4, c5]
- return outputs
- # ------------------ Functions ------------------
- ## build Yolo's Backbone
- def build_backbone(cfg):
- # model
- backbone = RTCBackbone(cfg)
-
- return backbone
- if __name__ == '__main__':
- import time
- from thop import profile
- class BaseConfig(object):
- def __init__(self) -> None:
- self.stage_dims = [64, 128, 256, 512, 512]
- self.stage_depth = [3, 6, 6, 3]
- self.bk_block = "elan_layer"
- self.bk_ds_block = "mdown"
- self.bk_act = 'silu'
- self.bk_norm = 'bn'
- self.bk_depthwise = False
- self.use_pretrained = False
- self.width = 0.5
- self.depth = 0.34
- self.ratio = 2.0
- cfg = BaseConfig()
- model = build_backbone(cfg).cuda()
- x = torch.randn(1, 3, 640, 640).cuda()
- for _ in range(5):
- t0 = time.time()
- outputs = model(x)
- t1 = time.time()
- print('Time: ', t1 - t0)
-
- for out in outputs:
- print(out.shape)
- print('==============================')
- flops, params = profile(model, inputs=(x, ), verbose=False)
- print('==============================')
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Params : {:.2f} M'.format(params / 1e6))
|