rtcdet_backbone.py 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135
  1. import torch
  2. import torch.nn as nn
  3. try:
  4. from .rtcdet_basic import BasicConv, ElanLayer, MDown, ADown
  5. except:
  6. from rtcdet_basic import BasicConv, ElanLayer, MDown, ADown
  7. # ------------------ Basic functions ------------------
  8. class RTCBackbone(nn.Module):
  9. def __init__(self, cfg):
  10. super(RTCBackbone, self).__init__()
  11. # ------------------ Basic setting ------------------
  12. self.stage_depth = [round(nb * cfg.depth) for nb in cfg.stage_depth]
  13. self.stage_dims = [round(dim * cfg.width * cfg.ratio) if i == len(cfg.stage_dims) - 1
  14. else round(dim * cfg.width) for i, dim in enumerate(cfg.stage_dims)]
  15. self.pyramid_feat_dims = self.stage_dims[-3:]
  16. # ------------------ Model setting ------------------
  17. ## P1/2
  18. self.layer_1 = BasicConv(3, self.stage_dims[0], kernel_size=6, padding=2, stride=2,
  19. act_type=cfg.bk_act, norm_type=cfg.bk_norm, depthwise=cfg.bk_depthwise)
  20. # P2/4
  21. self.layer_2 = nn.Sequential(
  22. self.make_downsample_block(cfg, self.stage_dims[0], self.stage_dims[1]),
  23. self.make_stage_block(cfg, self.stage_dims[1], self.stage_dims[1], self.stage_depth[0])
  24. )
  25. # P3/8
  26. self.layer_3 = nn.Sequential(
  27. self.make_downsample_block(cfg, self.stage_dims[1], self.stage_dims[2]),
  28. self.make_stage_block(cfg, self.stage_dims[2], self.stage_dims[2], self.stage_depth[1])
  29. )
  30. # P4/16
  31. self.layer_4 = nn.Sequential(
  32. self.make_downsample_block(cfg, self.stage_dims[2], self.stage_dims[3]),
  33. self.make_stage_block(cfg, self.stage_dims[3], self.stage_dims[3], self.stage_depth[2])
  34. )
  35. # P5/32
  36. self.layer_5 = nn.Sequential(
  37. self.make_downsample_block(cfg, self.stage_dims[3], self.stage_dims[4]),
  38. self.make_stage_block(cfg, self.stage_dims[4], self.stage_dims[4], self.stage_depth[3])
  39. )
  40. # Initialize all layers
  41. self.init_weights()
  42. def init_weights(self):
  43. """Initialize the parameters."""
  44. for m in self.modules():
  45. if isinstance(m, torch.nn.Conv2d):
  46. m.reset_parameters()
  47. def make_downsample_block(self, cfg, in_dim, out_dim):
  48. if cfg.bk_ds_block == "conv":
  49. return BasicConv(in_dim, out_dim, kernel_size=3, padding=1, stride=2,
  50. act_type=cfg.bk_act, norm_type=cfg.bk_norm, depthwise=cfg.bk_depthwise)
  51. if cfg.bk_ds_block == "mdown":
  52. return MDown(in_dim, out_dim, cfg.bk_act, cfg.bk_norm, cfg.bk_depthwise)
  53. if cfg.bk_ds_block == "adown":
  54. return ADown(in_dim, out_dim, cfg.bk_act, cfg.bk_norm, cfg.bk_depthwise)
  55. if cfg.bk_ds_block == "maxpool":
  56. assert in_dim == out_dim
  57. return nn.MaxPool2d((2, 2), stride=2)
  58. else:
  59. raise NotImplementedError("Unknown fpn downsample block: {}".format(cfg.fpn_ds_block))
  60. def make_stage_block(self, cfg, in_dim, out_dim, stage_depth):
  61. if cfg.bk_block == "elan_layer":
  62. return ElanLayer(in_dim = in_dim,
  63. out_dim = out_dim,
  64. num_blocks = stage_depth,
  65. expansion = 0.5,
  66. shortcut = True,
  67. act_type = cfg.bk_act,
  68. norm_type = cfg.bk_norm,
  69. depthwise = cfg.bk_depthwise)
  70. else:
  71. raise NotImplementedError("Unknown stage block: {}".format(cfg.bk_block))
  72. def forward(self, x):
  73. c1 = self.layer_1(x)
  74. c2 = self.layer_2(c1)
  75. c3 = self.layer_3(c2)
  76. c4 = self.layer_4(c3)
  77. c5 = self.layer_5(c4)
  78. outputs = [c3, c4, c5]
  79. return outputs
  80. # ------------------ Functions ------------------
  81. ## build Yolo's Backbone
  82. def build_backbone(cfg):
  83. # model
  84. backbone = RTCBackbone(cfg)
  85. return backbone
  86. if __name__ == '__main__':
  87. import time
  88. from thop import profile
  89. class BaseConfig(object):
  90. def __init__(self) -> None:
  91. self.stage_dims = [64, 128, 256, 512, 512]
  92. self.stage_depth = [3, 6, 6, 3]
  93. self.bk_block = "elan_layer"
  94. self.bk_ds_block = "mdown"
  95. self.bk_act = 'silu'
  96. self.bk_norm = 'bn'
  97. self.bk_depthwise = False
  98. self.use_pretrained = False
  99. self.width = 0.5
  100. self.depth = 0.34
  101. self.ratio = 2.0
  102. cfg = BaseConfig()
  103. model = build_backbone(cfg).cuda()
  104. x = torch.randn(1, 3, 640, 640).cuda()
  105. for _ in range(5):
  106. t0 = time.time()
  107. outputs = model(x)
  108. t1 = time.time()
  109. print('Time: ', t1 - t0)
  110. for out in outputs:
  111. print(out.shape)
  112. print('==============================')
  113. flops, params = profile(model, inputs=(x, ), verbose=False)
  114. print('==============================')
  115. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  116. print('Params : {:.2f} M'.format(params / 1e6))