import torch import torch.nn as nn try: from .rtcdet_basic import BasicConv, ElanLayer, MDown, ADown except: from rtcdet_basic import BasicConv, ElanLayer, MDown, ADown # ------------------ Basic functions ------------------ class RTCBackbone(nn.Module): def __init__(self, cfg): super(RTCBackbone, self).__init__() # ------------------ Basic setting ------------------ self.stage_depth = [round(nb * cfg.depth) for nb in cfg.stage_depth] self.stage_dims = [round(dim * cfg.width * cfg.ratio) if i == len(cfg.stage_dims) - 1 else round(dim * cfg.width) for i, dim in enumerate(cfg.stage_dims)] self.pyramid_feat_dims = self.stage_dims[-3:] # ------------------ Model setting ------------------ ## P1/2 self.layer_1 = BasicConv(3, self.stage_dims[0], kernel_size=6, padding=2, stride=2, act_type=cfg.bk_act, norm_type=cfg.bk_norm, depthwise=cfg.bk_depthwise) # P2/4 self.layer_2 = nn.Sequential( self.make_downsample_block(cfg, self.stage_dims[0], self.stage_dims[1]), self.make_stage_block(cfg, self.stage_dims[1], self.stage_dims[1], self.stage_depth[0]) ) # P3/8 self.layer_3 = nn.Sequential( self.make_downsample_block(cfg, self.stage_dims[1], self.stage_dims[2]), self.make_stage_block(cfg, self.stage_dims[2], self.stage_dims[2], self.stage_depth[1]) ) # P4/16 self.layer_4 = nn.Sequential( self.make_downsample_block(cfg, self.stage_dims[2], self.stage_dims[3]), self.make_stage_block(cfg, self.stage_dims[3], self.stage_dims[3], self.stage_depth[2]) ) # P5/32 self.layer_5 = nn.Sequential( self.make_downsample_block(cfg, self.stage_dims[3], self.stage_dims[4]), self.make_stage_block(cfg, self.stage_dims[4], self.stage_dims[4], self.stage_depth[3]) ) # Initialize all layers self.init_weights() def init_weights(self): """Initialize the parameters.""" for m in self.modules(): if isinstance(m, torch.nn.Conv2d): m.reset_parameters() def make_downsample_block(self, cfg, in_dim, out_dim): if cfg.bk_ds_block == "conv": return BasicConv(in_dim, out_dim, kernel_size=3, padding=1, stride=2, act_type=cfg.bk_act, norm_type=cfg.bk_norm, depthwise=cfg.bk_depthwise) if cfg.bk_ds_block == "mdown": return MDown(in_dim, out_dim, cfg.bk_act, cfg.bk_norm, cfg.bk_depthwise) if cfg.bk_ds_block == "adown": return ADown(in_dim, out_dim, cfg.bk_act, cfg.bk_norm, cfg.bk_depthwise) if cfg.bk_ds_block == "maxpool": assert in_dim == out_dim return nn.MaxPool2d((2, 2), stride=2) else: raise NotImplementedError("Unknown fpn downsample block: {}".format(cfg.fpn_ds_block)) def make_stage_block(self, cfg, in_dim, out_dim, stage_depth): if cfg.bk_block == "elan_layer": return ElanLayer(in_dim = in_dim, out_dim = out_dim, num_blocks = stage_depth, expansion = 0.5, shortcut = True, act_type = cfg.bk_act, norm_type = cfg.bk_norm, depthwise = cfg.bk_depthwise) else: raise NotImplementedError("Unknown stage block: {}".format(cfg.bk_block)) def forward(self, x): c1 = self.layer_1(x) c2 = self.layer_2(c1) c3 = self.layer_3(c2) c4 = self.layer_4(c3) c5 = self.layer_5(c4) outputs = [c3, c4, c5] return outputs # ------------------ Functions ------------------ ## build Yolo's Backbone def build_backbone(cfg): # model backbone = RTCBackbone(cfg) return backbone if __name__ == '__main__': import time from thop import profile class BaseConfig(object): def __init__(self) -> None: self.stage_dims = [64, 128, 256, 512, 512] self.stage_depth = [3, 6, 6, 3] self.bk_block = "elan_layer" self.bk_ds_block = "mdown" self.bk_act = 'silu' self.bk_norm = 'bn' self.bk_depthwise = False self.use_pretrained = False self.width = 0.5 self.depth = 0.34 self.ratio = 2.0 cfg = BaseConfig() model = build_backbone(cfg).cuda() x = torch.randn(1, 3, 640, 640).cuda() for _ in range(5): t0 = time.time() outputs = model(x) t1 = time.time() print('Time: ', t1 - t0) for out in outputs: print(out.shape) print('==============================') flops, params = profile(model, inputs=(x, ), verbose=False) print('==============================') print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2)) print('Params : {:.2f} M'.format(params / 1e6))