loss.py 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197
  1. import torch
  2. import torch.nn.functional as F
  3. from utils.box_ops import bbox2dist, bbox_iou
  4. from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
  5. from .matcher import TaskAlignedAssigner
  6. # ---------- Criterion for RTCDet ----------
  7. class SetCriterion(object):
  8. def __init__(self, cfg):
  9. # --------------- Basic parameters ---------------
  10. self.cfg = cfg
  11. self.reg_max = cfg.reg_max
  12. self.num_classes = cfg.num_classes
  13. self.loss_cls_type = cfg.loss_cls_type
  14. self.matcher_dict = cfg.matcher_dict
  15. # --------------- Loss config ---------------
  16. self.loss_cls_weight = cfg.weight_dict["loss_cls"]
  17. self.loss_box_weight = cfg.weight_dict["loss_box"]
  18. self.loss_dfl_weight = cfg.weight_dict["loss_dfl"]
  19. # --------------- Matcher config ---------------
  20. self.matcher = TaskAlignedAssigner(num_classes = cfg.num_classes,
  21. topk_candidates = self.matcher_dict["topk_candidates"],
  22. alpha = self.matcher_dict["tal_alpha"],
  23. beta = self.matcher_dict["tal_beta"],
  24. )
  25. def loss_classes(self, pred_cls, gt_score):
  26. # Compute VFL loss
  27. if self.loss_cls_type == "vfl":
  28. alpha, gamma = 0.75, 2.0
  29. pred_sigmoid = pred_cls.sigmoid()
  30. focal_weight = gt_score * (gt_score > 0.0).float() + \
  31. alpha * (pred_sigmoid - gt_score).abs().pow(gamma) * \
  32. (gt_score <= 0.0).float()
  33. loss_cls = F.binary_cross_entropy_with_logits(
  34. pred_cls, gt_score, reduction='none') * focal_weight
  35. # Compute BCE loss
  36. else:
  37. loss_cls = F.binary_cross_entropy_with_logits(pred_cls, gt_score, reduction='none')
  38. return loss_cls
  39. def loss_bboxes(self, pred_box, gt_box, bbox_weight):
  40. # regression loss
  41. ious = bbox_iou(pred_box, gt_box, xywh=False, CIoU=True)
  42. loss_box = (1.0 - ious.squeeze(-1)) * bbox_weight
  43. return loss_box
  44. def loss_dfl(self, pred_reg, gt_box, anchor, stride, bbox_weight=None):
  45. # rescale coords by stride
  46. gt_box_s = gt_box / stride
  47. anchor_s = anchor / stride
  48. # compute deltas
  49. gt_ltrb_s = bbox2dist(anchor_s, gt_box_s, self.reg_max - 1)
  50. gt_left = gt_ltrb_s.to(torch.long)
  51. gt_right = gt_left + 1
  52. weight_left = gt_right.to(torch.float) - gt_ltrb_s
  53. weight_right = 1 - weight_left
  54. # loss left
  55. loss_left = F.cross_entropy(
  56. pred_reg.view(-1, self.reg_max),
  57. gt_left.view(-1),
  58. reduction='none').view(gt_left.shape) * weight_left
  59. # loss right
  60. loss_right = F.cross_entropy(
  61. pred_reg.view(-1, self.reg_max),
  62. gt_right.view(-1),
  63. reduction='none').view(gt_left.shape) * weight_right
  64. loss_dfl = (loss_left + loss_right).mean(-1)
  65. if bbox_weight is not None:
  66. loss_dfl *= bbox_weight
  67. return loss_dfl
  68. def __call__(self, outputs, targets):
  69. """
  70. outputs['pred_cls']: List(Tensor) [B, M, C]
  71. outputs['pred_reg']: List(Tensor) [B, M, 4*(reg_max+1)]
  72. outputs['pred_box']: List(Tensor) [B, M, 4]
  73. outputs['anchors']: List(Tensor) [M, 2]
  74. outputs['strides']: List(Int) [8, 16, 32] output stride
  75. outputs['stride_tensor']: List(Tensor) [M, 1]
  76. targets: (List) [dict{'boxes': [...],
  77. 'labels': [...],
  78. 'orig_size': ...}, ...]
  79. """
  80. # preds: [B, M, C]
  81. cls_preds = torch.cat(outputs['pred_cls'], dim=1)
  82. reg_preds = torch.cat(outputs['pred_reg'], dim=1)
  83. box_preds = torch.cat(outputs['pred_box'], dim=1)
  84. delta_preds = torch.cat(outputs['pred_delta'], dim=1)
  85. bs, num_anchors = cls_preds.shape[:2]
  86. device = cls_preds.device
  87. anchors = torch.cat(outputs['anchors'], dim=0)
  88. strides = torch.cat(outputs['stride_tensor'], dim=0)
  89. # --------------- label assignment ---------------
  90. gt_score_targets = []
  91. gt_bbox_targets = []
  92. fg_masks = []
  93. for batch_idx in range(bs):
  94. tgt_labels = targets[batch_idx]["labels"].to(device) # [Mp,]
  95. tgt_boxs = targets[batch_idx]["boxes"].to(device) # [Mp, 4]
  96. if self.cfg.normalize_coords:
  97. img_h, img_w = outputs['image_size']
  98. tgt_boxs[..., [0, 2]] *= img_w
  99. tgt_boxs[..., [1, 3]] *= img_h
  100. if self.cfg.box_format == 'xywh':
  101. tgt_boxs_x1y1 = tgt_boxs[..., :2] - 0.5 * tgt_boxs[..., 2:]
  102. tgt_boxs_x2y2 = tgt_boxs[..., :2] + 0.5 * tgt_boxs[..., 2:]
  103. tgt_boxs = torch.cat([tgt_boxs_x1y1, tgt_boxs_x2y2], dim=-1)
  104. # check target
  105. if len(tgt_labels) == 0 or tgt_boxs.max().item() == 0.:
  106. # There is no valid gt
  107. fg_mask = cls_preds.new_zeros(1, num_anchors).bool() #[1, M,]
  108. gt_score = cls_preds.new_zeros((1, num_anchors, self.num_classes)) #[1, M, C]
  109. gt_box = cls_preds.new_zeros((1, num_anchors, 4)) #[1, M, 4]
  110. else:
  111. tgt_labels = tgt_labels[None, :, None] # [1, Mp, 1]
  112. tgt_boxs = tgt_boxs[None] # [1, Mp, 4]
  113. (
  114. _,
  115. gt_box, # [1, M, 4]
  116. gt_score, # [1, M, C]
  117. fg_mask, # [1, M,]
  118. _
  119. ) = self.matcher(
  120. pd_scores = cls_preds[batch_idx:batch_idx+1].detach().sigmoid(),
  121. pd_bboxes = box_preds[batch_idx:batch_idx+1].detach(),
  122. anc_points = anchors,
  123. gt_labels = tgt_labels,
  124. gt_bboxes = tgt_boxs
  125. )
  126. gt_score_targets.append(gt_score)
  127. gt_bbox_targets.append(gt_box)
  128. fg_masks.append(fg_mask)
  129. # List[B, 1, M, C] -> Tensor[B, M, C] -> Tensor[BM, C]
  130. fg_masks = torch.cat(fg_masks, 0).view(-1) # [BM,]
  131. gt_score_targets = torch.cat(gt_score_targets, 0).view(-1, self.num_classes) # [BM, C]
  132. gt_bbox_targets = torch.cat(gt_bbox_targets, 0).view(-1, 4) # [BM, 4]
  133. num_fgs = gt_score_targets.sum()
  134. # Average loss normalizer across all the GPUs
  135. if is_dist_avail_and_initialized():
  136. torch.distributed.all_reduce(num_fgs)
  137. num_fgs = (num_fgs / get_world_size()).clamp(1.0)
  138. # ------------------ Classification loss ------------------
  139. cls_preds = cls_preds.view(-1, self.num_classes)
  140. loss_cls = self.loss_classes(cls_preds, gt_score_targets)
  141. loss_cls = loss_cls.sum() / num_fgs
  142. # ------------------ Regression loss ------------------
  143. box_preds_pos = box_preds.view(-1, 4)[fg_masks]
  144. box_targets_pos = gt_bbox_targets.view(-1, 4)[fg_masks]
  145. bbox_weight = gt_score_targets[fg_masks].sum(-1)
  146. loss_box = self.loss_bboxes(box_preds_pos, box_targets_pos, bbox_weight)
  147. loss_box = loss_box.sum() / num_fgs
  148. # ------------------ Distribution focal loss ------------------
  149. reg_preds_pos = reg_preds.view(-1, 4*self.reg_max)[fg_masks]
  150. anchors_pos = anchors[None].repeat(bs, 1, 1).view(-1, 2)[fg_masks]
  151. stride_pos = strides[None].repeat(bs, 1, 1).view(-1, 1)[fg_masks]
  152. loss_dfl = self.loss_dfl(reg_preds_pos, box_targets_pos, anchors_pos, stride_pos, bbox_weight)
  153. loss_dfl = loss_dfl.sum() / num_fgs
  154. # Compute total loss
  155. losses = loss_cls * self.loss_cls_weight + \
  156. loss_box * self.loss_box_weight + \
  157. loss_dfl * self.loss_dfl_weight
  158. loss_dict = dict(
  159. loss_cls = loss_cls,
  160. loss_box = loss_box,
  161. loss_dfl = loss_dfl,
  162. losses = losses
  163. )
  164. return loss_dict
  165. if __name__ == "__main__":
  166. pass