| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197 |
- import torch
- import torch.nn.functional as F
- from utils.box_ops import bbox2dist, bbox_iou
- from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
- from .matcher import TaskAlignedAssigner
- # ---------- Criterion for RTCDet ----------
- class SetCriterion(object):
- def __init__(self, cfg):
- # --------------- Basic parameters ---------------
- self.cfg = cfg
- self.reg_max = cfg.reg_max
- self.num_classes = cfg.num_classes
- self.loss_cls_type = cfg.loss_cls_type
- self.matcher_dict = cfg.matcher_dict
- # --------------- Loss config ---------------
- self.loss_cls_weight = cfg.weight_dict["loss_cls"]
- self.loss_box_weight = cfg.weight_dict["loss_box"]
- self.loss_dfl_weight = cfg.weight_dict["loss_dfl"]
- # --------------- Matcher config ---------------
- self.matcher = TaskAlignedAssigner(num_classes = cfg.num_classes,
- topk_candidates = self.matcher_dict["topk_candidates"],
- alpha = self.matcher_dict["tal_alpha"],
- beta = self.matcher_dict["tal_beta"],
- )
- def loss_classes(self, pred_cls, gt_score):
- # Compute VFL loss
- if self.loss_cls_type == "vfl":
- alpha, gamma = 0.75, 2.0
- pred_sigmoid = pred_cls.sigmoid()
- focal_weight = gt_score * (gt_score > 0.0).float() + \
- alpha * (pred_sigmoid - gt_score).abs().pow(gamma) * \
- (gt_score <= 0.0).float()
-
- loss_cls = F.binary_cross_entropy_with_logits(
- pred_cls, gt_score, reduction='none') * focal_weight
- # Compute BCE loss
- else:
- loss_cls = F.binary_cross_entropy_with_logits(pred_cls, gt_score, reduction='none')
- return loss_cls
-
- def loss_bboxes(self, pred_box, gt_box, bbox_weight):
- # regression loss
- ious = bbox_iou(pred_box, gt_box, xywh=False, CIoU=True)
- loss_box = (1.0 - ious.squeeze(-1)) * bbox_weight
- return loss_box
-
- def loss_dfl(self, pred_reg, gt_box, anchor, stride, bbox_weight=None):
- # rescale coords by stride
- gt_box_s = gt_box / stride
- anchor_s = anchor / stride
- # compute deltas
- gt_ltrb_s = bbox2dist(anchor_s, gt_box_s, self.reg_max - 1)
- gt_left = gt_ltrb_s.to(torch.long)
- gt_right = gt_left + 1
- weight_left = gt_right.to(torch.float) - gt_ltrb_s
- weight_right = 1 - weight_left
- # loss left
- loss_left = F.cross_entropy(
- pred_reg.view(-1, self.reg_max),
- gt_left.view(-1),
- reduction='none').view(gt_left.shape) * weight_left
- # loss right
- loss_right = F.cross_entropy(
- pred_reg.view(-1, self.reg_max),
- gt_right.view(-1),
- reduction='none').view(gt_left.shape) * weight_right
- loss_dfl = (loss_left + loss_right).mean(-1)
-
- if bbox_weight is not None:
- loss_dfl *= bbox_weight
- return loss_dfl
- def __call__(self, outputs, targets):
- """
- outputs['pred_cls']: List(Tensor) [B, M, C]
- outputs['pred_reg']: List(Tensor) [B, M, 4*(reg_max+1)]
- outputs['pred_box']: List(Tensor) [B, M, 4]
- outputs['anchors']: List(Tensor) [M, 2]
- outputs['strides']: List(Int) [8, 16, 32] output stride
- outputs['stride_tensor']: List(Tensor) [M, 1]
- targets: (List) [dict{'boxes': [...],
- 'labels': [...],
- 'orig_size': ...}, ...]
- """
- # preds: [B, M, C]
- cls_preds = torch.cat(outputs['pred_cls'], dim=1)
- reg_preds = torch.cat(outputs['pred_reg'], dim=1)
- box_preds = torch.cat(outputs['pred_box'], dim=1)
- delta_preds = torch.cat(outputs['pred_delta'], dim=1)
- bs, num_anchors = cls_preds.shape[:2]
- device = cls_preds.device
- anchors = torch.cat(outputs['anchors'], dim=0)
- strides = torch.cat(outputs['stride_tensor'], dim=0)
- # --------------- label assignment ---------------
- gt_score_targets = []
- gt_bbox_targets = []
- fg_masks = []
- for batch_idx in range(bs):
- tgt_labels = targets[batch_idx]["labels"].to(device) # [Mp,]
- tgt_boxs = targets[batch_idx]["boxes"].to(device) # [Mp, 4]
- if self.cfg.normalize_coords:
- img_h, img_w = outputs['image_size']
- tgt_boxs[..., [0, 2]] *= img_w
- tgt_boxs[..., [1, 3]] *= img_h
-
- if self.cfg.box_format == 'xywh':
- tgt_boxs_x1y1 = tgt_boxs[..., :2] - 0.5 * tgt_boxs[..., 2:]
- tgt_boxs_x2y2 = tgt_boxs[..., :2] + 0.5 * tgt_boxs[..., 2:]
- tgt_boxs = torch.cat([tgt_boxs_x1y1, tgt_boxs_x2y2], dim=-1)
- # check target
- if len(tgt_labels) == 0 or tgt_boxs.max().item() == 0.:
- # There is no valid gt
- fg_mask = cls_preds.new_zeros(1, num_anchors).bool() #[1, M,]
- gt_score = cls_preds.new_zeros((1, num_anchors, self.num_classes)) #[1, M, C]
- gt_box = cls_preds.new_zeros((1, num_anchors, 4)) #[1, M, 4]
- else:
- tgt_labels = tgt_labels[None, :, None] # [1, Mp, 1]
- tgt_boxs = tgt_boxs[None] # [1, Mp, 4]
- (
- _,
- gt_box, # [1, M, 4]
- gt_score, # [1, M, C]
- fg_mask, # [1, M,]
- _
- ) = self.matcher(
- pd_scores = cls_preds[batch_idx:batch_idx+1].detach().sigmoid(),
- pd_bboxes = box_preds[batch_idx:batch_idx+1].detach(),
- anc_points = anchors,
- gt_labels = tgt_labels,
- gt_bboxes = tgt_boxs
- )
- gt_score_targets.append(gt_score)
- gt_bbox_targets.append(gt_box)
- fg_masks.append(fg_mask)
- # List[B, 1, M, C] -> Tensor[B, M, C] -> Tensor[BM, C]
- fg_masks = torch.cat(fg_masks, 0).view(-1) # [BM,]
- gt_score_targets = torch.cat(gt_score_targets, 0).view(-1, self.num_classes) # [BM, C]
- gt_bbox_targets = torch.cat(gt_bbox_targets, 0).view(-1, 4) # [BM, 4]
- num_fgs = gt_score_targets.sum()
-
- # Average loss normalizer across all the GPUs
- if is_dist_avail_and_initialized():
- torch.distributed.all_reduce(num_fgs)
- num_fgs = (num_fgs / get_world_size()).clamp(1.0)
- # ------------------ Classification loss ------------------
- cls_preds = cls_preds.view(-1, self.num_classes)
- loss_cls = self.loss_classes(cls_preds, gt_score_targets)
- loss_cls = loss_cls.sum() / num_fgs
- # ------------------ Regression loss ------------------
- box_preds_pos = box_preds.view(-1, 4)[fg_masks]
- box_targets_pos = gt_bbox_targets.view(-1, 4)[fg_masks]
- bbox_weight = gt_score_targets[fg_masks].sum(-1)
- loss_box = self.loss_bboxes(box_preds_pos, box_targets_pos, bbox_weight)
- loss_box = loss_box.sum() / num_fgs
- # ------------------ Distribution focal loss ------------------
- reg_preds_pos = reg_preds.view(-1, 4*self.reg_max)[fg_masks]
- anchors_pos = anchors[None].repeat(bs, 1, 1).view(-1, 2)[fg_masks]
- stride_pos = strides[None].repeat(bs, 1, 1).view(-1, 1)[fg_masks]
- loss_dfl = self.loss_dfl(reg_preds_pos, box_targets_pos, anchors_pos, stride_pos, bbox_weight)
- loss_dfl = loss_dfl.sum() / num_fgs
- # Compute total loss
- losses = loss_cls * self.loss_cls_weight + \
- loss_box * self.loss_box_weight + \
- loss_dfl * self.loss_dfl_weight
- loss_dict = dict(
- loss_cls = loss_cls,
- loss_box = loss_box,
- loss_dfl = loss_dfl,
- losses = losses
- )
- return loss_dict
-
- if __name__ == "__main__":
- pass
|