rtcdet.py 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148
  1. # --------------- Torch components ---------------
  2. import torch
  3. import torch.nn as nn
  4. # --------------- Model components ---------------
  5. from .rtcdet_backbone import RTCBackbone
  6. from .rtcdet_neck import SPPF
  7. from .rtcdet_pafpn import RTCPaFPN
  8. from .rtcdet_head import MSDetHead
  9. from .rtcdet_pred import MSDetPredLayer
  10. # --------------- External components ---------------
  11. from utils.misc import multiclass_nms
  12. # Real-time Convolutional Detector
  13. class RTCDet(nn.Module):
  14. def __init__(self,
  15. cfg,
  16. is_val = False,
  17. ) -> None:
  18. super(RTCDet, self).__init__()
  19. # ---------------------- Basic setting ----------------------
  20. self.cfg = cfg
  21. self.num_classes = cfg.num_classes
  22. ## Post-process parameters
  23. self.topk_candidates = cfg.val_topk if is_val else cfg.test_topk
  24. self.conf_thresh = cfg.val_conf_thresh if is_val else cfg.test_conf_thresh
  25. self.nms_thresh = cfg.val_nms_thresh if is_val else cfg.test_nms_thresh
  26. self.no_multi_labels = False if is_val else True
  27. # ---------------------- Network Parameters ----------------------
  28. ## Backbone
  29. self.backbone = RTCBackbone(cfg)
  30. self.neck = SPPF(cfg, self.backbone.pyramid_feat_dims[-1], self.backbone.pyramid_feat_dims[-1])
  31. self.fpn = RTCPaFPN(cfg, self.backbone.pyramid_feat_dims)
  32. self.head = MSDetHead(cfg, self.fpn.out_dims)
  33. self.pred = MSDetPredLayer(cfg, self.head.cls_head_dim, self.head.reg_head_dim)
  34. def post_process(self, cls_preds, box_preds):
  35. """
  36. We process predictions at each scale hierarchically
  37. Input:
  38. cls_preds: List[torch.Tensor] -> [[B, M, C], ...], B=1
  39. box_preds: List[torch.Tensor] -> [[B, M, 4], ...], B=1
  40. Output:
  41. bboxes: np.array -> [N, 4]
  42. scores: np.array -> [N,]
  43. labels: np.array -> [N,]
  44. """
  45. all_scores = []
  46. all_labels = []
  47. all_bboxes = []
  48. for cls_pred_i, box_pred_i in zip(cls_preds, box_preds):
  49. cls_pred_i = cls_pred_i[0]
  50. box_pred_i = box_pred_i[0]
  51. if self.no_multi_labels:
  52. # [M,]
  53. scores, labels = torch.max(cls_pred_i.sigmoid(), dim=1)
  54. # Keep top k top scoring indices only.
  55. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  56. # topk candidates
  57. predicted_prob, topk_idxs = scores.sort(descending=True)
  58. topk_scores = predicted_prob[:num_topk]
  59. topk_idxs = topk_idxs[:num_topk]
  60. # filter out the proposals with low confidence score
  61. keep_idxs = topk_scores > self.conf_thresh
  62. scores = topk_scores[keep_idxs]
  63. topk_idxs = topk_idxs[keep_idxs]
  64. labels = labels[topk_idxs]
  65. bboxes = box_pred_i[topk_idxs]
  66. else:
  67. # [M, C] -> [MC,]
  68. scores_i = cls_pred_i.sigmoid().flatten()
  69. # Keep top k top scoring indices only.
  70. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  71. # torch.sort is actually faster than .topk (at least on GPUs)
  72. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  73. topk_scores = predicted_prob[:num_topk]
  74. topk_idxs = topk_idxs[:num_topk]
  75. # filter out the proposals with low confidence score
  76. keep_idxs = topk_scores > self.conf_thresh
  77. scores = topk_scores[keep_idxs]
  78. topk_idxs = topk_idxs[keep_idxs]
  79. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  80. labels = topk_idxs % self.num_classes
  81. bboxes = box_pred_i[anchor_idxs]
  82. all_scores.append(scores)
  83. all_labels.append(labels)
  84. all_bboxes.append(bboxes)
  85. scores = torch.cat(all_scores, dim=0)
  86. labels = torch.cat(all_labels, dim=0)
  87. bboxes = torch.cat(all_bboxes, dim=0)
  88. # to cpu & numpy
  89. scores = scores.cpu().numpy()
  90. labels = labels.cpu().numpy()
  91. bboxes = bboxes.cpu().numpy()
  92. # nms
  93. scores, labels, bboxes = multiclass_nms(
  94. scores, labels, bboxes, self.nms_thresh, self.num_classes)
  95. return bboxes, scores, labels
  96. def forward(self, x):
  97. # ---------------- Backbone ----------------
  98. pyramid_feats = self.backbone(x)
  99. # ---------------- Neck: SPP ----------------
  100. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  101. # ---------------- Neck: PaFPN ----------------
  102. pyramid_feats = self.fpn(pyramid_feats)
  103. # ---------------- Heads ----------------
  104. cls_feats, reg_feats = self.head(pyramid_feats)
  105. # ---------------- Preds ----------------
  106. outputs = self.pred(cls_feats, reg_feats)
  107. outputs['image_size'] = [x.shape[2], x.shape[3]]
  108. if not self.training:
  109. all_cls_preds = outputs['pred_cls']
  110. all_box_preds = outputs['pred_box']
  111. # post process
  112. bboxes, scores, labels = self.post_process(all_cls_preds, all_box_preds)
  113. outputs = {
  114. "scores": scores,
  115. "labels": labels,
  116. "bboxes": bboxes
  117. }
  118. return outputs