rtcdet_neck.py 1.3 KB

123456789101112131415161718192021222324252627282930313233343536373839
  1. import torch
  2. import torch.nn as nn
  3. from .rtcdet_basic import BasicConv
  4. # -------------- Neck network --------------
  5. class SPPF(nn.Module):
  6. """
  7. This code referenced to https://github.com/ultralytics/yolov5
  8. """
  9. def __init__(self, cfg, in_dim, out_dim):
  10. super().__init__()
  11. ## ----------- Basic Parameters -----------
  12. inter_dim = round(in_dim * cfg.neck_expand_ratio)
  13. self.out_dim = out_dim
  14. ## ----------- Network Parameters -----------
  15. self.input_proj = BasicConv(in_dim, inter_dim, kernel_size=1,
  16. act_type=cfg.neck_act, norm_type=cfg.neck_norm)
  17. self.output_proj = BasicConv(inter_dim * 4, out_dim, kernel_size=1,
  18. act_type=cfg.neck_act, norm_type=cfg.neck_norm)
  19. self.module = nn.MaxPool2d(cfg.spp_pooling_size, stride=1, padding=cfg.spp_pooling_size//2)
  20. # Initialize all layers
  21. self.init_weights()
  22. def init_weights(self):
  23. """Initialize the parameters."""
  24. for m in self.modules():
  25. if isinstance(m, torch.nn.Conv2d):
  26. m.reset_parameters()
  27. def forward(self, x):
  28. x = self.input_proj(x)
  29. y1 = self.module(x)
  30. y2 = self.module(y1)
  31. return self.output_proj(torch.cat((x, y1, y2, self.module(y2)), 1))