import torch import torch.nn as nn from .rtcdet_basic import BasicConv # -------------- Neck network -------------- class SPPF(nn.Module): """ This code referenced to https://github.com/ultralytics/yolov5 """ def __init__(self, cfg, in_dim, out_dim): super().__init__() ## ----------- Basic Parameters ----------- inter_dim = round(in_dim * cfg.neck_expand_ratio) self.out_dim = out_dim ## ----------- Network Parameters ----------- self.input_proj = BasicConv(in_dim, inter_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm) self.output_proj = BasicConv(inter_dim * 4, out_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm) self.module = nn.MaxPool2d(cfg.spp_pooling_size, stride=1, padding=cfg.spp_pooling_size//2) # Initialize all layers self.init_weights() def init_weights(self): """Initialize the parameters.""" for m in self.modules(): if isinstance(m, torch.nn.Conv2d): m.reset_parameters() def forward(self, x): x = self.input_proj(x) y1 = self.module(x) y2 = self.module(y1) return self.output_proj(torch.cat((x, y1, y2, self.module(y2)), 1))