| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from typing import List
- try:
- from .rtcdet_basic import BasicConv, DWConv, ElanLayer, MDown, ADown
- except:
- from rtcdet_basic import BasicConv, DWConv, ElanLayer, MDown, ADown
- # -------------- Feature pyramid network --------------
- class RTCPaFPN(nn.Module):
- def __init__(self,
- cfg,
- in_dims :List = [256, 512, 1024],
- ) -> None:
- super(RTCPaFPN, self).__init__()
- print('==============================')
- print('FPN: {}'.format("RTC-PaFPN"))
- # ----------- Basic Parameters -----------
- self.in_dims = in_dims[::-1]
- # ----------- Yolov8's Top-down FPN -----------
- ## P5 -> P4
- self.top_down_layer_1 = self.make_fpn_block(cfg, self.in_dims[0] + self.in_dims[1], round(512*cfg.width), round(3 * cfg.depth))
- ## P4 -> P3
- self.top_down_layer_2 = self.make_fpn_block(cfg, self.in_dims[2] + round(512*cfg.width), round(256*cfg.width), round(3 * cfg.depth))
- # ----------- Yolov8's Bottom-up PAN -----------
- ## P3 -> P4
- self.dowmsample_layer_1 = self.make_downsample_block(cfg, round(256*cfg.width), round(256*cfg.width))
- self.bottom_up_layer_1 = self.make_fpn_block(cfg, round(256*cfg.width) + round(512*cfg.width), round(512*cfg.width), round(3 * cfg.depth))
- ## P4 -> P5
- self.dowmsample_layer_2 = self.make_downsample_block(cfg, round(512*cfg.width), round(512*cfg.width))
- self.bottom_up_layer_2 = self.make_fpn_block(cfg, round(512*cfg.width) + self.in_dims[0], round(512*cfg.width*cfg.ratio), round(3 * cfg.depth))
- # ----------- Output projection -----------
- self.out_layers = nn.ModuleList([
- BasicConv(in_dim, round(256*cfg.width), kernel_size=1, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm)
- for in_dim in [round(256*cfg.width), round(512*cfg.width), round(512*cfg.width*cfg.ratio)]])
- self.out_dims = [round(256*cfg.width)] * 3
- self.init_weights()
-
- def init_weights(self):
- """Initialize the parameters."""
- for m in self.modules():
- if isinstance(m, torch.nn.Conv2d):
- m.reset_parameters()
- def make_downsample_block(self, cfg, in_dim, out_dim):
- if cfg.fpn_ds_block == "conv":
- return BasicConv(in_dim, out_dim, kernel_size=3, padding=1, stride=2,
- act_type=cfg.fpn_act, norm_type=cfg.fpn_norm, depthwise=cfg.fpn_depthwise)
- if cfg.fpn_ds_block == "dw_conv":
- return DWConv(in_dim, out_dim, kernel_size=3, padding=1, stride=2,
- act_type=cfg.fpn_act, norm_type=cfg.fpn_norm)
- if cfg.fpn_ds_block == "mdown":
- return MDown(in_dim, out_dim, cfg.bk_act, cfg.bk_norm, cfg.bk_depthwise)
- if cfg.fpn_ds_block == "adown":
- return ADown(in_dim, out_dim, cfg.bk_act, cfg.bk_norm, cfg.bk_depthwise)
- else:
- raise NotImplementedError("Unknown fpn downsample block: {}".format(cfg.fpn_ds_block))
-
- def make_fpn_block(self, cfg, in_dim, out_dim, block_depth):
- if cfg.fpn_block == "elan_layer":
- return ElanLayer(in_dim = in_dim,
- out_dim = out_dim,
- num_blocks = block_depth,
- expansion = 0.5,
- shortcut = False,
- act_type = cfg.fpn_act,
- norm_type = cfg.fpn_norm,
- depthwise = cfg.fpn_depthwise)
- else:
- raise NotImplementedError("Unknown stage block: {}".format(cfg.bk_block))
-
- def forward(self, features):
- c3, c4, c5 = features
- # ------------------ Top down FPN ------------------
- ## P5 -> P4
- p5_up = F.interpolate(c5, scale_factor=2.0)
- p4 = self.top_down_layer_1(torch.cat([p5_up, c4], dim=1))
- ## P4 -> P3
- p4_up = F.interpolate(p4, scale_factor=2.0)
- p3 = self.top_down_layer_2(torch.cat([p4_up, c3], dim=1))
- # ------------------ Bottom up FPN ------------------
- ## p3 -> P4
- p3_ds = self.dowmsample_layer_1(p3)
- p4 = self.bottom_up_layer_1(torch.cat([p3_ds, p4], dim=1))
- ## P4 -> 5
- p4_ds = self.dowmsample_layer_2(p4)
- p5 = self.bottom_up_layer_2(torch.cat([p4_ds, c5], dim=1))
- out_feats = [p3, p4, p5] # [P3, P4, P5]
-
- # ------------------ Output projection ------------------
- out_feats_proj = []
- for feat, layer in zip(out_feats, self.out_layers):
- out_feats_proj.append(layer(feat))
-
- return out_feats_proj
-
|