|
|
@@ -24,7 +24,7 @@ from dataset.build import build_dataset, build_transform
|
|
|
|
|
|
# Trainer refered to YOLOv8
|
|
|
class YoloTrainer(object):
|
|
|
- def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion):
|
|
|
+ def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
|
|
|
# ------------------- basic parameters -------------------
|
|
|
self.args = args
|
|
|
self.epoch = 0
|
|
|
@@ -32,7 +32,14 @@ class YoloTrainer(object):
|
|
|
self.last_opt_step = 0
|
|
|
self.device = device
|
|
|
self.criterion = criterion
|
|
|
+ self.world_size = world_size
|
|
|
self.heavy_eval = False
|
|
|
+ self.no_aug_epoch = 20
|
|
|
+ self.clip_grad = 10
|
|
|
+ self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.937, 'weight_decay': 5e-4, 'lr0': 0.01}
|
|
|
+ self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
|
|
|
+ self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
|
|
|
+ self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
|
|
|
|
|
|
# ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
|
|
|
self.data_cfg = data_cfg
|
|
|
@@ -41,14 +48,13 @@ class YoloTrainer(object):
|
|
|
|
|
|
# ---------------------------- Build Transform ----------------------------
|
|
|
self.train_transform, self.trans_cfg = build_transform(
|
|
|
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
|
|
|
+ args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=True)
|
|
|
self.val_transform, _ = build_transform(
|
|
|
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
|
|
|
+ args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=False)
|
|
|
|
|
|
# ---------------------------- Build Dataset & Dataloader ----------------------------
|
|
|
self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
|
|
|
- world_size = distributed_utils.get_world_size()
|
|
|
- self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // world_size, CollateFunc())
|
|
|
+ self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
|
|
|
|
|
|
# ---------------------------- Build Evaluator ----------------------------
|
|
|
self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
|
|
|
@@ -58,12 +64,11 @@ class YoloTrainer(object):
|
|
|
|
|
|
# ---------------------------- Build Optimizer ----------------------------
|
|
|
accumulate = max(1, round(64 / self.args.batch_size))
|
|
|
- self.model_cfg['weight_decay'] *= self.args.batch_size * accumulate / 64
|
|
|
- self.optimizer, self.start_epoch = build_yolo_optimizer(self.model_cfg, model, self.args.resume)
|
|
|
+ self.optimizer_dict['weight_decay'] *= self.args.batch_size * accumulate / 64
|
|
|
+ self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
|
|
|
|
|
|
# ---------------------------- Build LR Scheduler ----------------------------
|
|
|
- self.args.max_epoch += self.args.wp_epoch
|
|
|
- self.lr_scheduler, self.lf = build_lr_scheduler(self.model_cfg, self.optimizer, self.args.max_epoch)
|
|
|
+ self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
|
|
|
self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
|
|
|
if self.args.resume:
|
|
|
self.lr_scheduler.step()
|
|
|
@@ -71,11 +76,7 @@ class YoloTrainer(object):
|
|
|
# ---------------------------- Build Model-EMA ----------------------------
|
|
|
if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
|
|
|
print('Build ModelEMA ...')
|
|
|
- self.model_ema = ModelEMA(
|
|
|
- model,
|
|
|
- self.model_cfg['ema_decay'],
|
|
|
- self.model_cfg['ema_tau'],
|
|
|
- self.start_epoch * len(self.train_loader))
|
|
|
+ self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
|
|
|
else:
|
|
|
self.model_ema = None
|
|
|
|
|
|
@@ -86,7 +87,7 @@ class YoloTrainer(object):
|
|
|
self.train_loader.batch_sampler.sampler.set_epoch(epoch)
|
|
|
|
|
|
# check second stage
|
|
|
- if epoch >= (self.args.max_epoch - self.model_cfg['no_aug_epoch'] - 1):
|
|
|
+ if epoch >= (self.args.max_epoch - self.no_aug_epoch - 1):
|
|
|
# close mosaic augmentation
|
|
|
if self.train_loader.dataset.mosaic_prob > 0.:
|
|
|
print('close Mosaic Augmentation ...')
|
|
|
@@ -176,7 +177,7 @@ class YoloTrainer(object):
|
|
|
nw = epoch_size * self.args.wp_epoch
|
|
|
accumulate = accumulate = max(1, round(64 / self.args.batch_size))
|
|
|
|
|
|
- # Train one epoch
|
|
|
+ # train one epoch
|
|
|
for iter_i, (images, targets) in enumerate(self.train_loader):
|
|
|
ni = iter_i + self.epoch * epoch_size
|
|
|
# Warmup
|
|
|
@@ -186,11 +187,11 @@ class YoloTrainer(object):
|
|
|
for j, x in enumerate(self.optimizer.param_groups):
|
|
|
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
|
|
x['lr'] = np.interp(
|
|
|
- ni, xi, [self.model_cfg['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
|
|
|
+ ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
|
|
|
if 'momentum' in x:
|
|
|
- x['momentum'] = np.interp(ni, xi, [self.model_cfg['warmup_momentum'], self.model_cfg['momentum']])
|
|
|
+ x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
|
|
|
|
|
|
- # To device
|
|
|
+ # to device
|
|
|
images = images.to(self.device, non_blocking=True).float() / 255.
|
|
|
|
|
|
# Multi scale
|
|
|
@@ -200,34 +201,34 @@ class YoloTrainer(object):
|
|
|
else:
|
|
|
targets = self.refine_targets(targets, self.args.min_box_size)
|
|
|
|
|
|
- # Visualize train targets
|
|
|
+ # visualize train targets
|
|
|
if self.args.vis_tgt:
|
|
|
vis_data(images*255, targets)
|
|
|
|
|
|
- # Inference
|
|
|
+ # inference
|
|
|
with torch.cuda.amp.autocast(enabled=self.args.fp16):
|
|
|
outputs = model(images)
|
|
|
- # Compute loss
|
|
|
+ # loss
|
|
|
loss_dict = self.criterion(outputs=outputs, targets=targets)
|
|
|
losses = loss_dict['losses']
|
|
|
losses *= images.shape[0] # loss * bs
|
|
|
|
|
|
+ # reduce
|
|
|
loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
|
|
|
|
|
|
- if self.args.distributed:
|
|
|
- # gradient averaged between devices in DDP mode
|
|
|
- losses *= distributed_utils.get_world_size()
|
|
|
+ # gradient averaged between devices in DDP mode
|
|
|
+ losses *= distributed_utils.get_world_size()
|
|
|
|
|
|
- # Backward
|
|
|
+ # backward
|
|
|
self.scaler.scale(losses).backward()
|
|
|
|
|
|
# Optimize
|
|
|
if ni - self.last_opt_step >= accumulate:
|
|
|
- if self.model_cfg['clip_grad'] > 0:
|
|
|
+ if self.clip_grad > 0:
|
|
|
# unscale gradients
|
|
|
self.scaler.unscale_(self.optimizer)
|
|
|
# clip gradients
|
|
|
- torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.model_cfg['clip_grad'])
|
|
|
+ torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
|
|
|
# optimizer.step
|
|
|
self.scaler.step(self.optimizer)
|
|
|
self.scaler.update()
|
|
|
@@ -237,7 +238,7 @@ class YoloTrainer(object):
|
|
|
self.model_ema.update(model)
|
|
|
self.last_opt_step = ni
|
|
|
|
|
|
- # Logs
|
|
|
+ # display
|
|
|
if distributed_utils.is_main_process() and iter_i % 10 == 0:
|
|
|
t1 = time.time()
|
|
|
cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
|
|
|
@@ -247,11 +248,7 @@ class YoloTrainer(object):
|
|
|
log += '[lr: {:.6f}]'.format(cur_lr[2])
|
|
|
# loss infor
|
|
|
for k in loss_dict_reduced.keys():
|
|
|
- if k == 'losses' and self.args.distributed:
|
|
|
- world_size = distributed_utils.get_world_size()
|
|
|
- log += '[{}: {:.2f}]'.format(k, loss_dict[k] / world_size)
|
|
|
- else:
|
|
|
- log += '[{}: {:.2f}]'.format(k, loss_dict[k])
|
|
|
+ log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
|
|
|
|
|
|
# other infor
|
|
|
log += '[time: {:.2f}]'.format(t1 - t0)
|
|
|
@@ -262,7 +259,6 @@ class YoloTrainer(object):
|
|
|
|
|
|
t0 = time.time()
|
|
|
|
|
|
- # LR Schedule
|
|
|
self.lr_scheduler.step()
|
|
|
|
|
|
|
|
|
@@ -323,14 +319,19 @@ class YoloTrainer(object):
|
|
|
|
|
|
# Trainer refered to RTMDet
|
|
|
class RTMTrainer(object):
|
|
|
- def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion):
|
|
|
+ def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
|
|
|
# ------------------- basic parameters -------------------
|
|
|
self.args = args
|
|
|
self.epoch = 0
|
|
|
self.best_map = -1.
|
|
|
self.device = device
|
|
|
self.criterion = criterion
|
|
|
+ self.world_size = world_size
|
|
|
self.heavy_eval = False
|
|
|
+ self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
|
|
|
+ self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
|
|
|
+ self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.01}
|
|
|
+ self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
|
|
|
|
|
|
# ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
|
|
|
self.data_cfg = data_cfg
|
|
|
@@ -345,8 +346,7 @@ class RTMTrainer(object):
|
|
|
|
|
|
# ---------------------------- Build Dataset & Dataloader ----------------------------
|
|
|
self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
|
|
|
- world_size = distributed_utils.get_world_size()
|
|
|
- self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // world_size, CollateFunc())
|
|
|
+ self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
|
|
|
|
|
|
# ---------------------------- Build Evaluator ----------------------------
|
|
|
self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
|
|
|
@@ -355,12 +355,11 @@ class RTMTrainer(object):
|
|
|
self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
|
|
|
|
|
|
# ---------------------------- Build Optimizer ----------------------------
|
|
|
- self.model_cfg['lr0'] *= self.args.batch_size / 64
|
|
|
- self.optimizer, self.start_epoch = build_yolo_optimizer(self.model_cfg, model, self.args.resume)
|
|
|
+ self.optimizer_dict['lr0'] *= self.args.batch_size / 64
|
|
|
+ self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
|
|
|
|
|
|
# ---------------------------- Build LR Scheduler ----------------------------
|
|
|
- self.args.max_epoch += self.args.wp_epoch
|
|
|
- self.lr_scheduler, self.lf = build_lr_scheduler(self.model_cfg, self.optimizer, self.args.max_epoch)
|
|
|
+ self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
|
|
|
self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
|
|
|
if self.args.resume:
|
|
|
self.lr_scheduler.step()
|
|
|
@@ -368,11 +367,7 @@ class RTMTrainer(object):
|
|
|
# ---------------------------- Build Model-EMA ----------------------------
|
|
|
if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
|
|
|
print('Build ModelEMA ...')
|
|
|
- self.model_ema = ModelEMA(
|
|
|
- model,
|
|
|
- self.model_cfg['ema_decay'],
|
|
|
- self.model_cfg['ema_tau'],
|
|
|
- self.start_epoch * len(self.train_loader))
|
|
|
+ self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
|
|
|
else:
|
|
|
self.model_ema = None
|
|
|
|
|
|
@@ -607,7 +602,7 @@ class RTMTrainer(object):
|
|
|
|
|
|
# Trainer for DETR
|
|
|
class DetrTrainer(object):
|
|
|
- def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion):
|
|
|
+ def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
|
|
|
# ------------------- basic parameters -------------------
|
|
|
self.args = args
|
|
|
self.epoch = 0
|
|
|
@@ -615,7 +610,12 @@ class DetrTrainer(object):
|
|
|
self.last_opt_step = 0
|
|
|
self.device = device
|
|
|
self.criterion = criterion
|
|
|
+ self.world_size = world_size
|
|
|
self.heavy_eval = False
|
|
|
+ self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 1e-4, 'lr0': 0.0001}
|
|
|
+ self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
|
|
|
+ self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.1}
|
|
|
+ self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
|
|
|
|
|
|
# ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
|
|
|
self.data_cfg = data_cfg
|
|
|
@@ -630,8 +630,7 @@ class DetrTrainer(object):
|
|
|
|
|
|
# ---------------------------- Build Dataset & Dataloader ----------------------------
|
|
|
self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
|
|
|
- world_size = distributed_utils.get_world_size()
|
|
|
- self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // world_size, CollateFunc())
|
|
|
+ self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
|
|
|
|
|
|
# ---------------------------- Build Evaluator ----------------------------
|
|
|
self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
|
|
|
@@ -640,12 +639,11 @@ class DetrTrainer(object):
|
|
|
self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
|
|
|
|
|
|
# ---------------------------- Build Optimizer ----------------------------
|
|
|
- self.model_cfg['lr0'] *= self.args.batch_size / 16.
|
|
|
- self.optimizer, self.start_epoch = build_detr_optimizer(model_cfg, model, self.args.resume)
|
|
|
+ self.optimizer_dict['lr0'] *= self.args.batch_size / 16.
|
|
|
+ self.optimizer, self.start_epoch = build_detr_optimizer(self.optimizer_dict, model, self.args.resume)
|
|
|
|
|
|
# ---------------------------- Build LR Scheduler ----------------------------
|
|
|
- self.args.max_epoch += self.args.wp_epoch
|
|
|
- self.lr_scheduler, self.lf = build_lr_scheduler(self.model_cfg, self.optimizer, self.args.max_epoch)
|
|
|
+ self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
|
|
|
self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
|
|
|
if self.args.resume:
|
|
|
self.lr_scheduler.step()
|
|
|
@@ -653,11 +651,7 @@ class DetrTrainer(object):
|
|
|
# ---------------------------- Build Model-EMA ----------------------------
|
|
|
if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
|
|
|
print('Build ModelEMA ...')
|
|
|
- self.model_ema = ModelEMA(
|
|
|
- model,
|
|
|
- self.model_cfg['ema_decay'],
|
|
|
- self.model_cfg['ema_tau'],
|
|
|
- self.start_epoch * len(self.train_loader))
|
|
|
+ self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
|
|
|
else:
|
|
|
self.model_ema = None
|
|
|
|
|
|
@@ -910,13 +904,13 @@ class DetrTrainer(object):
|
|
|
|
|
|
|
|
|
# Build Trainer
|
|
|
-def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion):
|
|
|
+def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
|
|
|
if model_cfg['trainer_type'] == 'yolo':
|
|
|
- return YoloTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion)
|
|
|
+ return YoloTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
|
|
|
elif model_cfg['trainer_type'] == 'rtmdet':
|
|
|
- return RTMTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion)
|
|
|
+ return RTMTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
|
|
|
elif model_cfg['trainer_type'] == 'detr':
|
|
|
- return DetrTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion)
|
|
|
+ return DetrTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
|
|
|
else:
|
|
|
raise NotImplementedError
|
|
|
|