yolov5_config.py 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234
  1. # YOLOv5 Config
  2. yolov5_cfg = {
  3. 'yolov5_n':{
  4. # ---------------- Model config ----------------
  5. ## Backbone
  6. 'backbone': 'cspdarknet',
  7. 'pretrained': True,
  8. 'bk_act': 'silu',
  9. 'bk_norm': 'BN',
  10. 'bk_dpw': False,
  11. 'width': 0.25,
  12. 'depth': 0.34,
  13. 'stride': [8, 16, 32], # P3, P4, P5
  14. 'max_stride': 32,
  15. ## FPN
  16. 'fpn': 'yolov5_pafpn',
  17. 'fpn_reduce_layer': 'Conv',
  18. 'fpn_downsample_layer': 'Conv',
  19. 'fpn_core_block': 'CSPBlock',
  20. 'fpn_act': 'silu',
  21. 'fpn_norm': 'BN',
  22. 'fpn_depthwise': False,
  23. ## Head
  24. 'head': 'decoupled_head',
  25. 'head_act': 'silu',
  26. 'head_norm': 'BN',
  27. 'num_cls_head': 2,
  28. 'num_reg_head': 2,
  29. 'head_depthwise': False,
  30. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  31. [30, 61], [62, 45], [59, 119], # P4
  32. [116, 90], [156, 198], [373, 326]], # P5
  33. # ---------------- Train config ----------------
  34. ## input
  35. 'multi_scale': [0.5, 1.0], # 320 -> 640
  36. 'trans_type': 'yolov5_nano',
  37. # ---------------- Assignment config ----------------
  38. ## matcher
  39. 'anchor_thresh': 4.0,
  40. # ---------------- Loss config ----------------
  41. ## loss weight
  42. 'loss_obj_weight': 1.0,
  43. 'loss_cls_weight': 1.0,
  44. 'loss_box_weight': 5.0,
  45. # ---------------- Train config ----------------
  46. 'trainer_type': 'yolo',
  47. },
  48. 'yolov5_s':{
  49. # ---------------- Model config ----------------
  50. ## Backbone
  51. 'backbone': 'cspdarknet',
  52. 'pretrained': True,
  53. 'bk_act': 'silu',
  54. 'bk_norm': 'BN',
  55. 'bk_dpw': False,
  56. 'width': 0.50,
  57. 'depth': 0.34,
  58. 'stride': [8, 16, 32], # P3, P4, P5
  59. 'max_stride': 32,
  60. ## FPN
  61. 'fpn': 'yolov5_pafpn',
  62. 'fpn_reduce_layer': 'Conv',
  63. 'fpn_downsample_layer': 'Conv',
  64. 'fpn_core_block': 'CSPBlock',
  65. 'fpn_act': 'silu',
  66. 'fpn_norm': 'BN',
  67. 'fpn_depthwise': False,
  68. ## Head
  69. 'head': 'decoupled_head',
  70. 'head_act': 'silu',
  71. 'head_norm': 'BN',
  72. 'num_cls_head': 2,
  73. 'num_reg_head': 2,
  74. 'head_depthwise': False,
  75. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  76. [30, 61], [62, 45], [59, 119], # P4
  77. [116, 90], [156, 198], [373, 326]], # P5
  78. # ---------------- Train config ----------------
  79. ## input
  80. 'multi_scale': [0.5, 1.0], # 320 -> 640
  81. 'trans_type': 'yolov5_small',
  82. # ---------------- Assignment config ----------------
  83. ## matcher
  84. 'anchor_thresh': 4.0,
  85. # ---------------- Loss config ----------------
  86. ## loss weight
  87. 'loss_obj_weight': 1.0,
  88. 'loss_cls_weight': 1.0,
  89. 'loss_box_weight': 5.0,
  90. # ---------------- Train config ----------------
  91. 'trainer_type': 'yolo',
  92. },
  93. 'yolov5_m':{
  94. # ---------------- Model config ----------------
  95. ## Backbone
  96. 'backbone': 'cspdarknet',
  97. 'pretrained': True,
  98. 'bk_act': 'silu',
  99. 'bk_norm': 'BN',
  100. 'bk_dpw': False,
  101. 'width': 0.75,
  102. 'depth': 0.67,
  103. 'stride': [8, 16, 32], # P3, P4, P5
  104. 'max_stride': 32,
  105. ## FPN
  106. 'fpn': 'yolov5_pafpn',
  107. 'fpn_reduce_layer': 'Conv',
  108. 'fpn_downsample_layer': 'Conv',
  109. 'fpn_core_block': 'CSPBlock',
  110. 'fpn_act': 'silu',
  111. 'fpn_norm': 'BN',
  112. 'fpn_depthwise': False,
  113. ## Head
  114. 'head': 'decoupled_head',
  115. 'head_act': 'silu',
  116. 'head_norm': 'BN',
  117. 'num_cls_head': 2,
  118. 'num_reg_head': 2,
  119. 'head_depthwise': False,
  120. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  121. [30, 61], [62, 45], [59, 119], # P4
  122. [116, 90], [156, 198], [373, 326]], # P5
  123. # ---------------- Train config ----------------
  124. ## input
  125. 'multi_scale': [0.5, 1.0], # 320 -> 640
  126. 'trans_type': 'yolov5_medium',
  127. # ---------------- Assignment config ----------------
  128. ## matcher
  129. 'anchor_thresh': 4.0,
  130. # ---------------- Loss config ----------------
  131. ## loss weight
  132. 'loss_obj_weight': 1.0,
  133. 'loss_cls_weight': 1.0,
  134. 'loss_box_weight': 5.0,
  135. # ---------------- Train config ----------------
  136. 'trainer_type': 'yolo',
  137. },
  138. 'yolov5_l':{
  139. # ---------------- Model config ----------------
  140. ## Backbone
  141. 'backbone': 'cspdarknet',
  142. 'pretrained': True,
  143. 'bk_act': 'silu',
  144. 'bk_norm': 'BN',
  145. 'bk_dpw': False,
  146. 'width': 1.0,
  147. 'depth': 1.0,
  148. 'stride': [8, 16, 32], # P3, P4, P5
  149. 'max_stride': 32,
  150. ## FPN
  151. 'fpn': 'yolov5_pafpn',
  152. 'fpn_reduce_layer': 'Conv',
  153. 'fpn_downsample_layer': 'Conv',
  154. 'fpn_core_block': 'CSPBlock',
  155. 'fpn_act': 'silu',
  156. 'fpn_norm': 'BN',
  157. 'fpn_depthwise': False,
  158. ## Head
  159. 'head': 'decoupled_head',
  160. 'head_act': 'silu',
  161. 'head_norm': 'BN',
  162. 'num_cls_head': 2,
  163. 'num_reg_head': 2,
  164. 'head_depthwise': False,
  165. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  166. [30, 61], [62, 45], [59, 119], # P4
  167. [116, 90], [156, 198], [373, 326]], # P5
  168. # ---------------- Train config ----------------
  169. ## input
  170. 'multi_scale': [0.5, 1.0], # 320 -> 640
  171. 'trans_type': 'yolov5_large',
  172. # ---------------- Assignment config ----------------
  173. ## matcher
  174. 'anchor_thresh': 4.0,
  175. # ---------------- Loss config ----------------
  176. ## loss weight
  177. 'loss_obj_weight': 1.0,
  178. 'loss_cls_weight': 1.0,
  179. 'loss_box_weight': 5.0,
  180. # ---------------- Train config ----------------
  181. 'trainer_type': 'yolo',
  182. },
  183. 'yolov5_x':{
  184. # ---------------- Model config ----------------
  185. ## Backbone
  186. 'backbone': 'cspdarknet',
  187. 'pretrained': True,
  188. 'bk_act': 'silu',
  189. 'bk_norm': 'BN',
  190. 'bk_dpw': False,
  191. 'width': 1.25,
  192. 'depth': 1.34,
  193. 'stride': [8, 16, 32], # P3, P4, P5
  194. 'max_stride': 32,
  195. ## FPN
  196. 'fpn': 'yolov5_pafpn',
  197. 'fpn_reduce_layer': 'Conv',
  198. 'fpn_downsample_layer': 'Conv',
  199. 'fpn_core_block': 'CSPBlock',
  200. 'fpn_act': 'silu',
  201. 'fpn_norm': 'BN',
  202. 'fpn_depthwise': False,
  203. ## Head
  204. 'head': 'decoupled_head',
  205. 'head_act': 'silu',
  206. 'head_norm': 'BN',
  207. 'num_cls_head': 2,
  208. 'num_reg_head': 2,
  209. 'head_depthwise': False,
  210. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  211. [30, 61], [62, 45], [59, 119], # P4
  212. [116, 90], [156, 198], [373, 326]], # P5
  213. # ---------------- Train config ----------------
  214. ## input
  215. 'multi_scale': [0.5, 1.0], # 320 -> 640
  216. 'trans_type': 'yolov5_huge',
  217. # ---------------- Assignment config ----------------
  218. ## matcher
  219. 'anchor_thresh': 4.0,
  220. # ---------------- Loss config ----------------
  221. ## loss weight
  222. 'loss_obj_weight': 1.0,
  223. 'loss_cls_weight': 1.0,
  224. 'loss_box_weight': 5.0,
  225. # ---------------- Train config ----------------
  226. 'trainer_type': 'yolo',
  227. },
  228. }