yolo_free_v1_pred.py 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143
  1. import torch
  2. import torch.nn as nn
  3. class SingleLevelPredLayer(nn.Module):
  4. def __init__(self, cls_dim, reg_dim, num_classes, num_coords=4):
  5. super().__init__()
  6. # --------- Basic Parameters ----------
  7. self.cls_dim = cls_dim
  8. self.reg_dim = reg_dim
  9. self.num_classes = num_classes
  10. self.num_coords = num_coords
  11. # --------- Network Parameters ----------
  12. self.obj_pred = nn.Conv2d(reg_dim, 1, kernel_size=1)
  13. self.cls_pred = nn.Conv2d(cls_dim, num_classes, kernel_size=1)
  14. self.reg_pred = nn.Conv2d(reg_dim, num_coords, kernel_size=1)
  15. self.init_bias()
  16. def init_bias(self):
  17. # Init bias
  18. init_prob = 0.01
  19. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  20. # obj pred
  21. b = self.obj_pred.bias.view(1, -1)
  22. b.data.fill_(bias_value.item())
  23. self.obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  24. # cls pred
  25. b = self.cls_pred.bias.view(1, -1)
  26. b.data.fill_(bias_value.item())
  27. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  28. # reg pred
  29. b = self.reg_pred.bias.view(-1, )
  30. b.data.fill_(1.0)
  31. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  32. w = self.reg_pred.weight
  33. w.data.fill_(0.)
  34. self.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
  35. def forward(self, cls_feat, reg_feat):
  36. """
  37. in_feats: (Tensor) [B, C, H, W]
  38. """
  39. obj_pred = self.obj_pred(reg_feat)
  40. cls_pred = self.cls_pred(cls_feat)
  41. reg_pred = self.reg_pred(reg_feat)
  42. return obj_pred, cls_pred, reg_pred
  43. class MultiLevelPredLayer(nn.Module):
  44. def __init__(self, cls_dim, reg_dim, strides, num_classes, num_coords=4, num_levels=3):
  45. super().__init__()
  46. # --------- Basic Parameters ----------
  47. self.cls_dim = cls_dim
  48. self.reg_dim = reg_dim
  49. self.strides = strides
  50. self.num_classes = num_classes
  51. self.num_coords = num_coords
  52. self.num_levels = num_levels
  53. # ----------- Network Parameters -----------
  54. self.multi_level_preds = nn.ModuleList(
  55. [SingleLevelPredLayer(
  56. cls_dim,
  57. reg_dim,
  58. num_classes,
  59. num_coords)
  60. for _ in range(num_levels)
  61. ])
  62. def generate_anchors(self, level, fmp_size):
  63. """
  64. fmp_size: (List) [H, W]
  65. """
  66. # generate grid cells
  67. fmp_h, fmp_w = fmp_size
  68. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  69. # [H, W, 2] -> [HW, 2]
  70. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  71. anchors += 0.5 # add center offset
  72. anchors *= self.strides[level]
  73. return anchors
  74. def decode_bbox(self, reg_pred, anchors, stride):
  75. ctr_pred = reg_pred[..., :2] * stride + anchors[..., :2]
  76. wh_pred = torch.exp(reg_pred[..., 2:]) * stride
  77. pred_x1y1 = ctr_pred - wh_pred * 0.5
  78. pred_x2y2 = ctr_pred + wh_pred * 0.5
  79. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  80. return box_pred
  81. def forward(self, cls_feats, reg_feats):
  82. """
  83. feats: List[(Tensor)] [[B, C, H, W], ...]
  84. """
  85. all_anchors = []
  86. all_obj_preds = []
  87. all_cls_preds = []
  88. all_box_preds = []
  89. for level in range(self.num_levels):
  90. obj_pred, cls_pred, reg_pred = self.multi_level_preds[level](
  91. cls_feats[level], reg_feats[level])
  92. B, _, H, W = cls_pred.size()
  93. fmp_size = [H, W]
  94. # generate anchor boxes: [M, 4]
  95. anchors = self.generate_anchors(level, fmp_size)
  96. anchors = anchors.to(cls_pred.device)
  97. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  98. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  99. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  100. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  101. box_pred = self.decode_bbox(reg_pred, anchors, self.strides[level])
  102. all_obj_preds.append(obj_pred)
  103. all_cls_preds.append(cls_pred)
  104. all_box_preds.append(box_pred)
  105. all_anchors.append(anchors)
  106. # output dict
  107. outputs = {"pred_obj": all_obj_preds, # List(Tensor) [B, M, 1]
  108. "pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  109. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  110. "anchors": all_anchors, # List(Tensor) [B, M, 2]
  111. "strides": self.strides} # List(Int) [8, 16, 32]
  112. return outputs
  113. # build detection head
  114. def build_pred_layer(cls_dim, reg_dim, strides, num_classes, num_coords=4, num_levels=3):
  115. pred_layers = MultiLevelPredLayer(cls_dim, reg_dim, strides, num_classes, num_coords, num_levels)
  116. return pred_layers