import torch import torch.nn as nn class SingleLevelPredLayer(nn.Module): def __init__(self, cls_dim, reg_dim, num_classes, num_coords=4): super().__init__() # --------- Basic Parameters ---------- self.cls_dim = cls_dim self.reg_dim = reg_dim self.num_classes = num_classes self.num_coords = num_coords # --------- Network Parameters ---------- self.obj_pred = nn.Conv2d(reg_dim, 1, kernel_size=1) self.cls_pred = nn.Conv2d(cls_dim, num_classes, kernel_size=1) self.reg_pred = nn.Conv2d(reg_dim, num_coords, kernel_size=1) self.init_bias() def init_bias(self): # Init bias init_prob = 0.01 bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob)) # obj pred b = self.obj_pred.bias.view(1, -1) b.data.fill_(bias_value.item()) self.obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) # cls pred b = self.cls_pred.bias.view(1, -1) b.data.fill_(bias_value.item()) self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) # reg pred b = self.reg_pred.bias.view(-1, ) b.data.fill_(1.0) self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) w = self.reg_pred.weight w.data.fill_(0.) self.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True) def forward(self, cls_feat, reg_feat): """ in_feats: (Tensor) [B, C, H, W] """ obj_pred = self.obj_pred(reg_feat) cls_pred = self.cls_pred(cls_feat) reg_pred = self.reg_pred(reg_feat) return obj_pred, cls_pred, reg_pred class MultiLevelPredLayer(nn.Module): def __init__(self, cls_dim, reg_dim, strides, num_classes, num_coords=4, num_levels=3): super().__init__() # --------- Basic Parameters ---------- self.cls_dim = cls_dim self.reg_dim = reg_dim self.strides = strides self.num_classes = num_classes self.num_coords = num_coords self.num_levels = num_levels # ----------- Network Parameters ----------- self.multi_level_preds = nn.ModuleList( [SingleLevelPredLayer( cls_dim, reg_dim, num_classes, num_coords) for _ in range(num_levels) ]) def generate_anchors(self, level, fmp_size): """ fmp_size: (List) [H, W] """ # generate grid cells fmp_h, fmp_w = fmp_size anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)]) # [H, W, 2] -> [HW, 2] anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2) anchors += 0.5 # add center offset anchors *= self.strides[level] return anchors def decode_bbox(self, reg_pred, anchors, stride): ctr_pred = reg_pred[..., :2] * stride + anchors[..., :2] wh_pred = torch.exp(reg_pred[..., 2:]) * stride pred_x1y1 = ctr_pred - wh_pred * 0.5 pred_x2y2 = ctr_pred + wh_pred * 0.5 box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1) return box_pred def forward(self, cls_feats, reg_feats): """ feats: List[(Tensor)] [[B, C, H, W], ...] """ all_anchors = [] all_obj_preds = [] all_cls_preds = [] all_box_preds = [] for level in range(self.num_levels): obj_pred, cls_pred, reg_pred = self.multi_level_preds[level]( cls_feats[level], reg_feats[level]) B, _, H, W = cls_pred.size() fmp_size = [H, W] # generate anchor boxes: [M, 4] anchors = self.generate_anchors(level, fmp_size) anchors = anchors.to(cls_pred.device) # [B, C, H, W] -> [B, H, W, C] -> [B, M, C] obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1) cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes) reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4) box_pred = self.decode_bbox(reg_pred, anchors, self.strides[level]) all_obj_preds.append(obj_pred) all_cls_preds.append(cls_pred) all_box_preds.append(box_pred) all_anchors.append(anchors) # output dict outputs = {"pred_obj": all_obj_preds, # List(Tensor) [B, M, 1] "pred_cls": all_cls_preds, # List(Tensor) [B, M, C] "pred_box": all_box_preds, # List(Tensor) [B, M, 4] "anchors": all_anchors, # List(Tensor) [B, M, 2] "strides": self.strides} # List(Int) [8, 16, 32] return outputs # build detection head def build_pred_layer(cls_dim, reg_dim, strides, num_classes, num_coords=4, num_levels=3): pred_layers = MultiLevelPredLayer(cls_dim, reg_dim, strides, num_classes, num_coords, num_levels) return pred_layers