yolo_free_v1.py 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181
  1. # --------------- Torch components ---------------
  2. import torch
  3. import torch.nn as nn
  4. import torch.nn.functional as F
  5. # --------------- Model components ---------------
  6. from .yolo_free_v1_backbone import build_backbone
  7. from .yolo_free_v1_neck import build_neck
  8. from .yolo_free_v1_pafpn import build_fpn
  9. from .yolo_free_v1_head import build_det_head
  10. from .yolo_free_v1_pred import build_pred_layer
  11. # --------------- External components ---------------
  12. from utils.misc import multiclass_nms
  13. # My YOLO
  14. class FreeYOLOv1(nn.Module):
  15. def __init__(self,
  16. cfg,
  17. device,
  18. num_classes = 20,
  19. conf_thresh = 0.05,
  20. nms_thresh = 0.6,
  21. trainable = False,
  22. topk = 1000,
  23. deploy = False):
  24. super(FreeYOLOv1, self).__init__()
  25. # ---------------------- Basic Parameters ----------------------
  26. self.cfg = cfg
  27. self.device = device
  28. self.stride = cfg['stride']
  29. self.num_classes = num_classes
  30. self.trainable = trainable
  31. self.conf_thresh = conf_thresh
  32. self.nms_thresh = nms_thresh
  33. self.topk = topk
  34. self.deploy = deploy
  35. self.head_dim = round(256*cfg['width'])
  36. # ---------------------- Network Parameters ----------------------
  37. ## ----------- Backbone -----------
  38. self.backbone, feats_dim = build_backbone(cfg, trainable&cfg['pretrained'])
  39. ## ----------- Neck: SPP -----------
  40. self.neck = build_neck(cfg=cfg, in_dim=feats_dim[-1], out_dim=feats_dim[-1])
  41. feats_dim[-1] = self.neck.out_dim
  42. ## ----------- Neck: FPN -----------
  43. self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=round(256*cfg['width']))
  44. self.fpn_dims = self.fpn.out_dim
  45. ## ----------- Heads -----------
  46. self.det_heads = build_det_head(
  47. cfg, self.fpn_dims, self.head_dim, num_classes, num_levels=len(self.stride))
  48. ## ----------- Preds -----------
  49. self.pred_layers = build_pred_layer(
  50. self.det_heads.cls_head_dim, self.det_heads.reg_head_dim,
  51. self.stride, num_classes, num_coords=4, num_levels=len(self.stride))
  52. ## post-process
  53. def post_process(self, obj_preds, cls_preds, box_preds):
  54. """
  55. Input:
  56. obj_preds: List(Tensor) [[H x W, 1], ...]
  57. cls_preds: List(Tensor) [[H x W, C], ...]
  58. box_preds: List(Tensor) [[H x W, 4], ...]
  59. anchors: List(Tensor) [[H x W, 2], ...]
  60. """
  61. all_scores = []
  62. all_labels = []
  63. all_bboxes = []
  64. for obj_pred_i, cls_pred_i, box_pred_i in zip(obj_preds, cls_preds, box_preds):
  65. obj_pred_i = obj_pred_i[0]
  66. cls_pred_i = cls_pred_i[0]
  67. box_pred_i = box_pred_i[0]
  68. # (H x W x KA x C,)
  69. scores_i = (torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid())).flatten()
  70. # Keep top k top scoring indices only.
  71. num_topk = min(self.topk, box_pred_i.size(0))
  72. # torch.sort is actually faster than .topk (at least on GPUs)
  73. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  74. topk_scores = predicted_prob[:num_topk]
  75. topk_idxs = topk_idxs[:num_topk]
  76. # filter out the proposals with low confidence score
  77. keep_idxs = topk_scores > self.conf_thresh
  78. scores = topk_scores[keep_idxs]
  79. topk_idxs = topk_idxs[keep_idxs]
  80. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  81. labels = topk_idxs % self.num_classes
  82. bboxes = box_pred_i[anchor_idxs]
  83. all_scores.append(scores)
  84. all_labels.append(labels)
  85. all_bboxes.append(bboxes)
  86. scores = torch.cat(all_scores)
  87. labels = torch.cat(all_labels)
  88. bboxes = torch.cat(all_bboxes)
  89. # to cpu & numpy
  90. scores = scores.cpu().numpy()
  91. labels = labels.cpu().numpy()
  92. bboxes = bboxes.cpu().numpy()
  93. # nms
  94. scores, labels, bboxes = multiclass_nms(
  95. scores, labels, bboxes, self.nms_thresh, self.num_classes, False)
  96. return bboxes, scores, labels
  97. # ---------------------- Main Process for Inference ----------------------
  98. @torch.no_grad()
  99. def inference_single_image(self, x):
  100. # ---------------- Backbone ----------------
  101. pyramid_feats = self.backbone(x)
  102. # ---------------- Neck: SPP ----------------
  103. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  104. # ---------------- Neck: PaFPN ----------------
  105. pyramid_feats = self.fpn(pyramid_feats)
  106. # ---------------- Heads ----------------
  107. cls_feats, reg_feats = self.det_heads(pyramid_feats)
  108. # ---------------- Preds ----------------
  109. outputs = self.pred_layers(cls_feats, reg_feats)
  110. all_obj_preds = outputs['pred_obj']
  111. all_cls_preds = outputs['pred_cls']
  112. all_box_preds = outputs['pred_box']
  113. if self.deploy:
  114. obj_preds = torch.cat(all_obj_preds, dim=1)[0]
  115. cls_preds = torch.cat(all_cls_preds, dim=1)[0]
  116. box_preds = torch.cat(all_box_preds, dim=1)[0]
  117. scores = torch.sqrt(obj_preds.sigmoid() * cls_preds.sigmoid())
  118. bboxes = box_preds
  119. # [n_anchors_all, 4 + C]
  120. outputs = torch.cat([bboxes, scores], dim=-1)
  121. return outputs
  122. else:
  123. # post process
  124. bboxes, scores, labels = self.post_process(
  125. all_obj_preds, all_cls_preds, all_box_preds)
  126. return bboxes, scores, labels
  127. def forward(self, x):
  128. if not self.trainable:
  129. return self.inference_single_image(x)
  130. else:
  131. # ---------------- Backbone ----------------
  132. pyramid_feats = self.backbone(x)
  133. # ---------------- Neck: SPP ----------------
  134. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  135. # ---------------- Neck: PaFPN ----------------
  136. pyramid_feats = self.fpn(pyramid_feats)
  137. # ---------------- Heads ----------------
  138. cls_feats, reg_feats = self.det_heads(pyramid_feats)
  139. # ---------------- Preds ----------------
  140. outputs = self.pred_layers(cls_feats, reg_feats)
  141. return outputs