yolox_config.py 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225
  1. # YOLOx Config
  2. yolox_cfg = {
  3. 'yolox_n':{
  4. # ---------------- Model config ----------------
  5. ## Backbone
  6. 'backbone': 'cspdarknet',
  7. 'pretrained': True,
  8. 'bk_act': 'silu',
  9. 'bk_norm': 'BN',
  10. 'bk_dpw': False,
  11. 'width': 0.25,
  12. 'depth': 0.34,
  13. 'stride': [8, 16, 32], # P3, P4, P5
  14. 'max_stride': 32,
  15. ## FPN
  16. 'fpn': 'yolov5_pafpn',
  17. 'fpn_reduce_layer': 'Conv',
  18. 'fpn_downsample_layer': 'Conv',
  19. 'fpn_core_block': 'CSPBlock',
  20. 'fpn_act': 'silu',
  21. 'fpn_norm': 'BN',
  22. 'fpn_depthwise': False,
  23. ## Head
  24. 'head': 'decoupled_head',
  25. 'head_act': 'silu',
  26. 'head_norm': 'BN',
  27. 'num_cls_head': 2,
  28. 'num_reg_head': 2,
  29. 'head_depthwise': False,
  30. # ---------------- Train config ----------------
  31. ## input
  32. 'multi_scale': [0.5, 1.5], # 320 -> 960
  33. 'trans_type': 'yolox_nano',
  34. # ---------------- Assignment config ----------------
  35. ## matcher
  36. 'matcher': {'center_sampling_radius': 2.5,
  37. 'topk_candicate': 10},
  38. # ---------------- Loss config ----------------
  39. ## loss weight
  40. 'loss_obj_weight': 1.0,
  41. 'loss_cls_weight': 1.0,
  42. 'loss_box_weight': 5.0,
  43. # ---------------- Train config ----------------
  44. 'trainer_type': 'rtmdet',
  45. },
  46. 'yolox_s':{
  47. # ---------------- Model config ----------------
  48. ## Backbone
  49. 'backbone': 'cspdarknet',
  50. 'pretrained': True,
  51. 'bk_act': 'silu',
  52. 'bk_norm': 'BN',
  53. 'bk_dpw': False,
  54. 'width': 0.50,
  55. 'depth': 0.34,
  56. 'stride': [8, 16, 32], # P3, P4, P5
  57. 'max_stride': 32,
  58. ## FPN
  59. 'fpn': 'yolov5_pafpn',
  60. 'fpn_reduce_layer': 'Conv',
  61. 'fpn_downsample_layer': 'Conv',
  62. 'fpn_core_block': 'CSPBlock',
  63. 'fpn_act': 'silu',
  64. 'fpn_norm': 'BN',
  65. 'fpn_depthwise': False,
  66. ## Head
  67. 'head': 'decoupled_head',
  68. 'head_act': 'silu',
  69. 'head_norm': 'BN',
  70. 'num_cls_head': 2,
  71. 'num_reg_head': 2,
  72. 'head_depthwise': False,
  73. # ---------------- Train config ----------------
  74. ## input
  75. 'multi_scale': [0.5, 1.5], # 320 -> 960
  76. 'trans_type': 'yolox_small',
  77. # ---------------- Assignment config ----------------
  78. ## matcher
  79. 'matcher': {'center_sampling_radius': 2.5,
  80. 'topk_candicate': 10},
  81. # ---------------- Loss config ----------------
  82. ## loss weight
  83. 'loss_obj_weight': 1.0,
  84. 'loss_cls_weight': 1.0,
  85. 'loss_box_weight': 5.0,
  86. # ---------------- Train config ----------------
  87. 'trainer_type': 'rtmdet',
  88. },
  89. 'yolox_m':{
  90. # ---------------- Model config ----------------
  91. ## Backbone
  92. 'backbone': 'cspdarknet',
  93. 'pretrained': True,
  94. 'bk_act': 'silu',
  95. 'bk_norm': 'BN',
  96. 'bk_dpw': False,
  97. 'width': 0.75,
  98. 'depth': 0.67,
  99. 'stride': [8, 16, 32], # P3, P4, P5
  100. 'max_stride': 32,
  101. ## FPN
  102. 'fpn': 'yolov5_pafpn',
  103. 'fpn_reduce_layer': 'Conv',
  104. 'fpn_downsample_layer': 'Conv',
  105. 'fpn_core_block': 'CSPBlock',
  106. 'fpn_act': 'silu',
  107. 'fpn_norm': 'BN',
  108. 'fpn_depthwise': False,
  109. ## Head
  110. 'head': 'decoupled_head',
  111. 'head_act': 'silu',
  112. 'head_norm': 'BN',
  113. 'num_cls_head': 2,
  114. 'num_reg_head': 2,
  115. 'head_depthwise': False,
  116. # ---------------- Train config ----------------
  117. ## input
  118. 'multi_scale': [0.5, 1.5], # 320 -> 960
  119. 'trans_type': 'yolox_medium',
  120. # ---------------- Assignment config ----------------
  121. ## matcher
  122. 'matcher': {'center_sampling_radius': 2.5,
  123. 'topk_candicate': 10},
  124. # ---------------- Loss config ----------------
  125. ## loss weight
  126. 'loss_obj_weight': 1.0,
  127. 'loss_cls_weight': 1.0,
  128. 'loss_box_weight': 5.0,
  129. # ---------------- Train config ----------------
  130. 'trainer_type': 'rtmdet',
  131. },
  132. 'yolox_l':{
  133. # ---------------- Model config ----------------
  134. ## Backbone
  135. 'backbone': 'cspdarknet',
  136. 'pretrained': True,
  137. 'bk_act': 'silu',
  138. 'bk_norm': 'BN',
  139. 'bk_dpw': False,
  140. 'width': 1.0,
  141. 'depth': 1.0,
  142. 'stride': [8, 16, 32], # P3, P4, P5
  143. 'max_stride': 32,
  144. ## FPN
  145. 'fpn': 'yolov5_pafpn',
  146. 'fpn_reduce_layer': 'Conv',
  147. 'fpn_downsample_layer': 'Conv',
  148. 'fpn_core_block': 'CSPBlock',
  149. 'fpn_act': 'silu',
  150. 'fpn_norm': 'BN',
  151. 'fpn_depthwise': False,
  152. ## Head
  153. 'head': 'decoupled_head',
  154. 'head_act': 'silu',
  155. 'head_norm': 'BN',
  156. 'num_cls_head': 2,
  157. 'num_reg_head': 2,
  158. 'head_depthwise': False,
  159. # ---------------- Train config ----------------
  160. ## input
  161. 'multi_scale': [0.5, 1.25], # 320 -> 800
  162. 'trans_type': 'yolox_large',
  163. # ---------------- Assignment config ----------------
  164. ## matcher
  165. 'matcher': {'center_sampling_radius': 2.5,
  166. 'topk_candicate': 10},
  167. # ---------------- Loss config ----------------
  168. ## loss weight
  169. 'loss_obj_weight': 1.0,
  170. 'loss_cls_weight': 1.0,
  171. 'loss_box_weight': 5.0,
  172. # ---------------- Train config ----------------
  173. 'trainer_type': 'rtmdet',
  174. },
  175. 'yolox_x':{
  176. # ---------------- Model config ----------------
  177. ## Backbone
  178. 'backbone': 'cspdarknet',
  179. 'pretrained': True,
  180. 'bk_act': 'silu',
  181. 'bk_norm': 'BN',
  182. 'bk_dpw': False,
  183. 'width': 1.25,
  184. 'depth': 1.34,
  185. 'stride': [8, 16, 32], # P3, P4, P5
  186. 'max_stride': 32,
  187. ## FPN
  188. 'fpn': 'yolov5_pafpn',
  189. 'fpn_reduce_layer': 'Conv',
  190. 'fpn_downsample_layer': 'Conv',
  191. 'fpn_core_block': 'CSPBlock',
  192. 'fpn_act': 'silu',
  193. 'fpn_norm': 'BN',
  194. 'fpn_depthwise': False,
  195. ## Head
  196. 'head': 'decoupled_head',
  197. 'head_act': 'silu',
  198. 'head_norm': 'BN',
  199. 'num_cls_head': 2,
  200. 'num_reg_head': 2,
  201. 'head_depthwise': False,
  202. # ---------------- Train config ----------------
  203. ## input
  204. 'multi_scale': [0.5, 1.25], # 320 -> 800
  205. 'trans_type': 'yolox_huge',
  206. # ---------------- Assignment config ----------------
  207. ## matcher
  208. 'matcher': {'center_sampling_radius': 2.5,
  209. 'topk_candicate': 10},
  210. # ---------------- Loss config ----------------
  211. ## loss weight
  212. 'loss_obj_weight': 1.0,
  213. 'loss_cls_weight': 1.0,
  214. 'loss_box_weight': 5.0,
  215. # ---------------- Train config ----------------
  216. 'trainer_type': 'rtmdet',
  217. },
  218. }