|
|
2 سال پیش | |
|---|---|---|
| config | 2 سال پیش | |
| dataset | 2 سال پیش | |
| evaluator | 2 سال پیش | |
| models | 2 سال پیش | |
| utils | 2 سال پیش | |
| .gitignore | 2 سال پیش | |
| LICENSE | 2 سال پیش | |
| README.md | 2 سال پیش | |
| README_CN.md | 2 سال پیش | |
| engine.py | 2 سال پیش | |
| eval.py | 2 سال پیش | |
| test.py | 2 سال پیش | |
| train.py | 2 سال پیش | |
| train.sh | 2 سال پیش |
YOLO Tutorial
English | 简体中文
Here is the source code for an introduction to YOLO. We adopted the core concept of YOLOv1-YOLOv4 for this project, made the necessary adjustments, and then developed the new YOLOv1-YOLOv4. By learning how to construct the well-known YOLO detector, we hope that newcomers can enter the field of object detection without any difficulty.
Book: The technical books that go along with this project's code is being reviewed, please be patient.
We recommend you to use Anaconda to create a conda environment:
conda create -n yolo python=3.6
Then, activate the environment:
conda activate yolo
Requirements:
pip install -r requirements.txt
My environment:
At least, please make sure your torch is version 1.x.
| Configuration | |
|---|---|
| Per GPU Batch Size | 16 |
| Init Lr | 0.01 |
| Warmup Scheduler | Linear |
| Lr Scheduler | Linear |
| Optimizer | SGD |
| Multi Scale Train | True |
Download VOC.
cd <PyTorch_YOLO_Tutorial>
cd dataset/scripts/
sh VOC2007.sh
sh VOC2012.sh
Check VOC
cd <PyTorch_YOLO_Tutorial>
python dataset/voc.py
Train on VOC
For example:
python train.py --cuda -d voc --root path/to/VOCdevkit -v yolov1 -bs 16 --max_epoch 150 --wp_epoch 1 --eval_epoch 10 --fp16 --ema --multi_scale
| Model | Scale | IP | Epoch | AP50 | FPS3090 FP32-bs1 | FLOPs (G) | Params (M) | Weight |
|---|---|---|---|---|---|---|---|---|
| YOLOv1 | 640 | √ | 150 | 76.7 | 37.8 | 21.3 | ckpt | |
| YOLOv2 | 640 | √ | 150 | 79.8 | 53.9 | 30.9 | ckpt | |
| YOLOv3 | 640 | √ | 150 | 82.0 | 167.4 | 54.9 | ckpt | |
| YOLOv4 | 640 | √ | 150 | 83.6 | 162.7 | 61.5 | ckpt | |
| YOLOX | 640 | √ | 150 |
| Model | Scale | IP | Epoch | APval 0.5:0.95 | APtest 50 | Weight |
|---|---|---|---|---|---|---|
| YOLOv1 | 640 | √ | 150 | |||
| YOLOv2 | 640 | √ | 150 | 32.7 | 50.9 | ckpt |
| YOLOv3 | 640 | √ | 250 | |||
| YOLOv4 | 640 | √ | 250 | |||
| YOLOX | 640 | √ | 250 |