|
|
@@ -96,13 +96,13 @@ For example:
|
|
|
python train.py --cuda -d coco --root path/to/COCO -v yolov1 -bs 16 --max_epoch 150 --wp_epoch 1 --eval_epoch 10 --fp16 --ema --multi_scale
|
|
|
```
|
|
|
|
|
|
-| Model | Scale | IP | Epoch | AP<sup>val<br>0.5:0.95 | AP<sup>test<br>0.5:0.95 | Weight |
|
|
|
-|--------|-------|------|-------|------------------------|-------------------------|--------|
|
|
|
+| Model | Scale | IP | Epoch | AP<sup>val<br>0.5:0.95 | AP<sup>test<br>50 | Weight |
|
|
|
+|--------|-------|------|-------|------------------------|-------------------|--------|
|
|
|
| YOLOv1 | 640 | √ | 150 | | | |
|
|
|
-| YOLOv2 | 640 | √ | 150 | | | |
|
|
|
-| YOLOv3 | 640 | √ | 150 | | | |
|
|
|
-| YOLOv4 | 640 | √ | 150 | | | |
|
|
|
-| YOLOX | 640 | √ | 150 | | | |
|
|
|
+| YOLOv2 | 640 | √ | 150 | 32.7 | 50.9 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov2_coco.pth) |
|
|
|
+| YOLOv3 | 640 | √ | 250 | | | |
|
|
|
+| YOLOv4 | 640 | √ | 250 | | | |
|
|
|
+| YOLOX | 640 | √ | 250 | | | |
|
|
|
|
|
|
*All models are trained with ImageNet pretrained weight (IP). All FLOPs are measured with a 640x640 image size on COCO val2017. The FPS is measured with batch size 1 on 3090 GPU from the model inference to the NMS operation.*
|
|
|
|