|
|
@@ -0,0 +1,274 @@
|
|
|
+import torch
|
|
|
+import torch.nn as nn
|
|
|
+
|
|
|
+from .yolox_backbone import build_backbone
|
|
|
+from .yolox_pafpn import build_fpn
|
|
|
+from .yolox_head import build_head
|
|
|
+
|
|
|
+from utils.nms import multiclass_nms
|
|
|
+
|
|
|
+
|
|
|
+# YOLOX
|
|
|
+class YOLOX(nn.Module):
|
|
|
+ def __init__(self,
|
|
|
+ cfg,
|
|
|
+ device,
|
|
|
+ num_classes=20,
|
|
|
+ conf_thresh=0.01,
|
|
|
+ topk=100,
|
|
|
+ nms_thresh=0.5,
|
|
|
+ trainable=False):
|
|
|
+ super(YOLOX, self).__init__()
|
|
|
+ # --------- Basic Parameters ----------
|
|
|
+ self.cfg = cfg
|
|
|
+ self.device = device
|
|
|
+ self.stride = [8, 16, 32]
|
|
|
+ self.num_classes = num_classes
|
|
|
+ self.trainable = trainable
|
|
|
+ self.conf_thresh = conf_thresh
|
|
|
+ self.nms_thresh = nms_thresh
|
|
|
+ self.topk = topk
|
|
|
+
|
|
|
+ # ------------------- Network Structure -------------------
|
|
|
+ ## 主干网络
|
|
|
+ self.backbone, feats_dim = build_backbone(cfg=cfg)
|
|
|
+
|
|
|
+ ## 颈部网络: 特征金字塔
|
|
|
+ self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=int(256*cfg['width']))
|
|
|
+ self.head_dim = self.fpn.out_dim
|
|
|
+
|
|
|
+ ## 检测头
|
|
|
+ self.non_shared_heads = nn.ModuleList(
|
|
|
+ [build_head(cfg, head_dim, head_dim, num_classes)
|
|
|
+ for head_dim in self.head_dim
|
|
|
+ ])
|
|
|
+
|
|
|
+ ## 预测层
|
|
|
+ self.obj_preds = nn.ModuleList(
|
|
|
+ [nn.Conv2d(head.reg_out_dim, 1, kernel_size=1)
|
|
|
+ for head in self.non_shared_heads
|
|
|
+ ])
|
|
|
+ self.cls_preds = nn.ModuleList(
|
|
|
+ [nn.Conv2d(head.cls_out_dim, self.num_classes, kernel_size=1)
|
|
|
+ for head in self.non_shared_heads
|
|
|
+ ])
|
|
|
+ self.reg_preds = nn.ModuleList(
|
|
|
+ [nn.Conv2d(head.reg_out_dim, 4, kernel_size=1)
|
|
|
+ for head in self.non_shared_heads
|
|
|
+ ])
|
|
|
+
|
|
|
+ # --------- Network Initialization ----------
|
|
|
+ # init bias
|
|
|
+ self.init_yolo()
|
|
|
+
|
|
|
+
|
|
|
+ def init_yolo(self):
|
|
|
+ # Init yolo
|
|
|
+ for m in self.modules():
|
|
|
+ if isinstance(m, nn.BatchNorm2d):
|
|
|
+ m.eps = 1e-3
|
|
|
+ m.momentum = 0.03
|
|
|
+ # Init bias
|
|
|
+ init_prob = 0.01
|
|
|
+ bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
|
|
|
+ # obj pred
|
|
|
+ for obj_pred in self.obj_preds:
|
|
|
+ b = obj_pred.bias.view(1, -1)
|
|
|
+ b.data.fill_(bias_value.item())
|
|
|
+ obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
|
|
+ # cls pred
|
|
|
+ for cls_pred in self.cls_preds:
|
|
|
+ b = cls_pred.bias.view(1, -1)
|
|
|
+ b.data.fill_(bias_value.item())
|
|
|
+ cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
|
|
+ # reg pred
|
|
|
+ for reg_pred in self.reg_preds:
|
|
|
+ b = reg_pred.bias.view(-1, )
|
|
|
+ b.data.fill_(1.0)
|
|
|
+ reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
|
|
+ w = reg_pred.weight
|
|
|
+ w.data.fill_(0.)
|
|
|
+ reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
|
|
|
+
|
|
|
+
|
|
|
+ def generate_anchors(self, level, fmp_size):
|
|
|
+ """
|
|
|
+ fmp_size: (List) [H, W]
|
|
|
+ """
|
|
|
+ # generate grid cells
|
|
|
+ fmp_h, fmp_w = fmp_size
|
|
|
+ anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
|
|
|
+ # [H, W, 2] -> [HW, 2]
|
|
|
+ anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
|
|
|
+ anchor_xy *= self.stride[level]
|
|
|
+ anchors = anchor_xy.to(self.device)
|
|
|
+
|
|
|
+ return anchors
|
|
|
+
|
|
|
+
|
|
|
+ def decode_boxes(self, anchors, reg_pred, stride):
|
|
|
+ """
|
|
|
+ anchors: (List[Tensor]) [1, M, 2] or [M, 2]
|
|
|
+ reg_pred: (List[Tensor]) [B, M, 4] or [M, 4]
|
|
|
+ """
|
|
|
+ # center of bbox
|
|
|
+ pred_ctr_xy = anchors + reg_pred[..., :2] * stride
|
|
|
+ # size of bbox
|
|
|
+ pred_box_wh = reg_pred[..., 2:].exp() * stride
|
|
|
+
|
|
|
+ pred_x1y1 = pred_ctr_xy - 0.5 * pred_box_wh
|
|
|
+ pred_x2y2 = pred_ctr_xy + 0.5 * pred_box_wh
|
|
|
+ pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
|
|
|
+
|
|
|
+ return pred_box
|
|
|
+
|
|
|
+
|
|
|
+ def post_process(self, obj_preds, cls_preds, reg_preds, anchors):
|
|
|
+ """
|
|
|
+ Input:
|
|
|
+ obj_preds: List(Tensor) [[H x W, 1], ...]
|
|
|
+ cls_preds: List(Tensor) [[H x W, C], ...]
|
|
|
+ reg_preds: List(Tensor) [[H x W, 4], ...]
|
|
|
+ anchors: List(Tensor) [[H x W, 2], ...]
|
|
|
+ """
|
|
|
+ all_scores = []
|
|
|
+ all_labels = []
|
|
|
+ all_bboxes = []
|
|
|
+
|
|
|
+ for level, (obj_pred_i, cls_pred_i, reg_pred_i, anchors_i) in enumerate(zip(obj_preds, cls_preds, reg_preds, anchors)):
|
|
|
+ # (H x W x C,)
|
|
|
+ scores_i = (torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid())).flatten()
|
|
|
+
|
|
|
+ # Keep top k top scoring indices only.
|
|
|
+ num_topk = min(self.topk, reg_pred_i.size(0))
|
|
|
+
|
|
|
+ # torch.sort is actually faster than .topk (at least on GPUs)
|
|
|
+ predicted_prob, topk_idxs = scores_i.sort(descending=True)
|
|
|
+ topk_scores = predicted_prob[:num_topk]
|
|
|
+ topk_idxs = topk_idxs[:num_topk]
|
|
|
+
|
|
|
+ # filter out the proposals with low confidence score
|
|
|
+ keep_idxs = topk_scores > self.conf_thresh
|
|
|
+ scores = topk_scores[keep_idxs]
|
|
|
+ topk_idxs = topk_idxs[keep_idxs]
|
|
|
+
|
|
|
+ anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
|
|
|
+ labels = topk_idxs % self.num_classes
|
|
|
+
|
|
|
+ reg_pred_i = reg_pred_i[anchor_idxs]
|
|
|
+ anchors_i = anchors_i[anchor_idxs]
|
|
|
+
|
|
|
+ # decode box: [M, 4]
|
|
|
+ bboxes = self.decode_boxes(anchors_i, reg_pred_i, self.stride[level])
|
|
|
+
|
|
|
+ all_scores.append(scores)
|
|
|
+ all_labels.append(labels)
|
|
|
+ all_bboxes.append(bboxes)
|
|
|
+
|
|
|
+ scores = torch.cat(all_scores)
|
|
|
+ labels = torch.cat(all_labels)
|
|
|
+ bboxes = torch.cat(all_bboxes)
|
|
|
+
|
|
|
+ # to cpu & numpy
|
|
|
+ scores = scores.cpu().numpy()
|
|
|
+ labels = labels.cpu().numpy()
|
|
|
+ bboxes = bboxes.cpu().numpy()
|
|
|
+
|
|
|
+ # nms
|
|
|
+ scores, labels, bboxes = multiclass_nms(
|
|
|
+ scores, labels, bboxes, self.nms_thresh, self.num_classes, False)
|
|
|
+
|
|
|
+ return bboxes, scores, labels
|
|
|
+
|
|
|
+
|
|
|
+ @torch.no_grad()
|
|
|
+ def inference_single_image(self, x):
|
|
|
+ # backbone
|
|
|
+ pyramid_feats = self.backbone(x)
|
|
|
+
|
|
|
+ # fpn
|
|
|
+ pyramid_feats = self.fpn(pyramid_feats)
|
|
|
+
|
|
|
+ # non-shared heads
|
|
|
+ all_obj_preds = []
|
|
|
+ all_cls_preds = []
|
|
|
+ all_reg_preds = []
|
|
|
+ all_anchors = []
|
|
|
+ for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
|
|
|
+ cls_feat, reg_feat = head(feat)
|
|
|
+
|
|
|
+ # [1, C, H, W]
|
|
|
+ obj_pred = self.obj_preds[level](reg_feat)
|
|
|
+ cls_pred = self.cls_preds[level](cls_feat)
|
|
|
+ reg_pred = self.reg_preds[level](reg_feat)
|
|
|
+
|
|
|
+ # anchors: [M, 2]
|
|
|
+ fmp_size = cls_pred.shape[-2:]
|
|
|
+ anchors = self.generate_anchors(level, fmp_size)
|
|
|
+
|
|
|
+ # [1, C, H, W] -> [H, W, C] -> [M, C]
|
|
|
+ obj_pred = obj_pred[0].permute(1, 2, 0).contiguous().view(-1, 1)
|
|
|
+ cls_pred = cls_pred[0].permute(1, 2, 0).contiguous().view(-1, self.num_classes)
|
|
|
+ reg_pred = reg_pred[0].permute(1, 2, 0).contiguous().view(-1, 4)
|
|
|
+
|
|
|
+ all_obj_preds.append(obj_pred)
|
|
|
+ all_cls_preds.append(cls_pred)
|
|
|
+ all_reg_preds.append(reg_pred)
|
|
|
+ all_anchors.append(anchors)
|
|
|
+
|
|
|
+ # post process
|
|
|
+ bboxes, scores, labels = self.post_process(
|
|
|
+ all_obj_preds, all_cls_preds, all_reg_preds, all_anchors)
|
|
|
+
|
|
|
+ return bboxes, scores, labels
|
|
|
+
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ if not self.trainable:
|
|
|
+ return self.inference_single_image(x)
|
|
|
+ else:
|
|
|
+ # backbone
|
|
|
+ pyramid_feats = self.backbone(x)
|
|
|
+
|
|
|
+ # fpn
|
|
|
+ pyramid_feats = self.fpn(pyramid_feats)
|
|
|
+
|
|
|
+ # non-shared heads
|
|
|
+ all_anchors = []
|
|
|
+ all_obj_preds = []
|
|
|
+ all_cls_preds = []
|
|
|
+ all_box_preds = []
|
|
|
+ for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
|
|
|
+ cls_feat, reg_feat = head(feat)
|
|
|
+
|
|
|
+ # [B, C, H, W]
|
|
|
+ obj_pred = self.obj_preds[level](reg_feat)
|
|
|
+ cls_pred = self.cls_preds[level](cls_feat)
|
|
|
+ reg_pred = self.reg_preds[level](reg_feat)
|
|
|
+
|
|
|
+ B, _, H, W = cls_pred.size()
|
|
|
+ fmp_size = [H, W]
|
|
|
+ # generate anchor boxes: [M, 4]
|
|
|
+ anchors = self.generate_anchors(level, fmp_size)
|
|
|
+
|
|
|
+ # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
|
|
|
+ obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
|
|
|
+ cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
|
|
|
+ reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
|
|
|
+
|
|
|
+ # decode box: [M, 4]
|
|
|
+ box_pred = self.decode_boxes(anchors, reg_pred, self.stride[level])
|
|
|
+
|
|
|
+ all_obj_preds.append(obj_pred)
|
|
|
+ all_cls_preds.append(cls_pred)
|
|
|
+ all_box_preds.append(box_pred)
|
|
|
+ all_anchors.append(anchors)
|
|
|
+
|
|
|
+ # output dict
|
|
|
+ outputs = {"pred_obj": all_obj_preds, # List(Tensor) [B, M, 1]
|
|
|
+ "pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
|
|
|
+ "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
|
|
|
+ "anchors": all_anchors, # List(Tensor) [B, M, 2]
|
|
|
+ 'strides': self.stride} # List(Int) [8, 16, 32]
|
|
|
+
|
|
|
+ return outputs
|