modules.py 4.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121
  1. import torch
  2. import torch.nn as nn
  3. from typing import List
  4. # --------------------- Basic modules ---------------------
  5. class ConvModule(nn.Module):
  6. def __init__(self,
  7. in_dim, # in channels
  8. out_dim, # out channels
  9. kernel_size=1, # kernel size
  10. padding=0, # padding
  11. stride=1, # padding
  12. dilation=1, # dilation
  13. ):
  14. super(ConvModule, self).__init__()
  15. self.conv = nn.Conv2d(in_dim, out_dim, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False)
  16. self.norm = nn.BatchNorm2d(out_dim)
  17. self.act = nn.SiLU(inplace=True)
  18. def forward(self, x):
  19. return self.act(self.norm(self.conv(x)))
  20. # ---------------------------- Basic Modules ----------------------------
  21. class MDown(nn.Module):
  22. def __init__(self, in_dim: int, out_dim: int, ):
  23. super().__init__()
  24. inter_dim = out_dim // 2
  25. self.downsample_1 = nn.Sequential(
  26. nn.MaxPool2d((2, 2), stride=2),
  27. ConvModule(in_dim, inter_dim, kernel_size=1)
  28. )
  29. self.downsample_2 = nn.Sequential(
  30. ConvModule(in_dim, inter_dim, kernel_size=1),
  31. ConvModule(inter_dim, inter_dim, kernel_size=3, padding=1, stride=2)
  32. )
  33. if in_dim == out_dim:
  34. self.output_proj = nn.Identity()
  35. else:
  36. self.output_proj = ConvModule(inter_dim * 2, out_dim, kernel_size=1)
  37. def forward(self, x):
  38. x1 = self.downsample_1(x)
  39. x2 = self.downsample_2(x)
  40. out = self.output_proj(torch.cat([x1, x2], dim=1))
  41. return out
  42. class ELANLayer(nn.Module):
  43. def __init__(self,
  44. in_dim,
  45. out_dim,
  46. expansion :float = 0.5,
  47. num_blocks :int = 1,
  48. ) -> None:
  49. super(ELANLayer, self).__init__()
  50. self.inter_dim = round(in_dim * expansion)
  51. self.conv_layer_1 = ConvModule(in_dim, self.inter_dim, kernel_size=1)
  52. self.conv_layer_2 = ConvModule(in_dim, self.inter_dim, kernel_size=1)
  53. self.conv_layer_3 = ConvModule(self.inter_dim * 4, out_dim, kernel_size=1)
  54. self.elan_layer_1 = nn.Sequential(*[ConvModule(self.inter_dim, self.inter_dim, kernel_size=3, padding=1)
  55. for _ in range(num_blocks)])
  56. self.elan_layer_2 = nn.Sequential(*[ConvModule(self.inter_dim, self.inter_dim, kernel_size=3, padding=1)
  57. for _ in range(num_blocks)])
  58. def forward(self, x):
  59. # Input proj
  60. x1 = self.conv_layer_1(x)
  61. x2 = self.conv_layer_2(x)
  62. x3 = self.elan_layer_1(x2)
  63. x4 = self.elan_layer_2(x3)
  64. out = self.conv_layer_3(torch.cat([x1, x2, x3, x4], dim=1))
  65. return out
  66. class ELANLayerFPN(nn.Module):
  67. def __init__(self,
  68. in_dim,
  69. out_dim,
  70. expansions :List = [0.5, 0.5],
  71. branch_width :int = 4,
  72. branch_depth :int = 1,
  73. ):
  74. super(ELANLayerFPN, self).__init__()
  75. # Basic parameters
  76. inter_dim = round(in_dim * expansions[0])
  77. inter_dim2 = round(inter_dim * expansions[1])
  78. # Network structure
  79. self.cv1 = ConvModule(in_dim, inter_dim, kernel_size=1)
  80. self.cv2 = ConvModule(in_dim, inter_dim, kernel_size=1)
  81. self.cv3 = nn.ModuleList()
  82. for idx in range(round(branch_width)):
  83. if idx == 0:
  84. cvs = [ConvModule(inter_dim, inter_dim2, kernel_size=3, padding=1)]
  85. else:
  86. cvs = [ConvModule(inter_dim2, inter_dim2, kernel_size=3, padding=1)]
  87. # deeper
  88. if round(branch_depth) > 1:
  89. for _ in range(1, round(branch_depth)):
  90. cvs.append(ConvModule(inter_dim2, inter_dim2, kernel_size=3, padding=1))
  91. self.cv3.append(nn.Sequential(*cvs))
  92. else:
  93. self.cv3.append(cvs[0])
  94. self.output_proj = ConvModule(inter_dim*2+inter_dim2*len(self.cv3), out_dim, kernel_size=1)
  95. def forward(self, x):
  96. x1 = self.cv1(x)
  97. x2 = self.cv2(x)
  98. inter_outs = [x1, x2]
  99. for m in self.cv3:
  100. y1 = inter_outs[-1]
  101. y2 = m(y1)
  102. inter_outs.append(y2)
  103. out = self.output_proj(torch.cat(inter_outs, dim=1))
  104. return out