| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121 |
- import torch
- import torch.nn as nn
- from typing import List
- # --------------------- Basic modules ---------------------
- class ConvModule(nn.Module):
- def __init__(self,
- in_dim, # in channels
- out_dim, # out channels
- kernel_size=1, # kernel size
- padding=0, # padding
- stride=1, # padding
- dilation=1, # dilation
- ):
- super(ConvModule, self).__init__()
- self.conv = nn.Conv2d(in_dim, out_dim, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False)
- self.norm = nn.BatchNorm2d(out_dim)
- self.act = nn.SiLU(inplace=True)
- def forward(self, x):
- return self.act(self.norm(self.conv(x)))
- # ---------------------------- Basic Modules ----------------------------
- class MDown(nn.Module):
- def __init__(self, in_dim: int, out_dim: int, ):
- super().__init__()
- inter_dim = out_dim // 2
- self.downsample_1 = nn.Sequential(
- nn.MaxPool2d((2, 2), stride=2),
- ConvModule(in_dim, inter_dim, kernel_size=1)
- )
- self.downsample_2 = nn.Sequential(
- ConvModule(in_dim, inter_dim, kernel_size=1),
- ConvModule(inter_dim, inter_dim, kernel_size=3, padding=1, stride=2)
- )
- if in_dim == out_dim:
- self.output_proj = nn.Identity()
- else:
- self.output_proj = ConvModule(inter_dim * 2, out_dim, kernel_size=1)
- def forward(self, x):
- x1 = self.downsample_1(x)
- x2 = self.downsample_2(x)
- out = self.output_proj(torch.cat([x1, x2], dim=1))
- return out
- class ELANLayer(nn.Module):
- def __init__(self,
- in_dim,
- out_dim,
- expansion :float = 0.5,
- num_blocks :int = 1,
- ) -> None:
- super(ELANLayer, self).__init__()
- self.inter_dim = round(in_dim * expansion)
- self.conv_layer_1 = ConvModule(in_dim, self.inter_dim, kernel_size=1)
- self.conv_layer_2 = ConvModule(in_dim, self.inter_dim, kernel_size=1)
- self.conv_layer_3 = ConvModule(self.inter_dim * 4, out_dim, kernel_size=1)
- self.elan_layer_1 = nn.Sequential(*[ConvModule(self.inter_dim, self.inter_dim, kernel_size=3, padding=1)
- for _ in range(num_blocks)])
- self.elan_layer_2 = nn.Sequential(*[ConvModule(self.inter_dim, self.inter_dim, kernel_size=3, padding=1)
- for _ in range(num_blocks)])
- def forward(self, x):
- # Input proj
- x1 = self.conv_layer_1(x)
- x2 = self.conv_layer_2(x)
- x3 = self.elan_layer_1(x2)
- x4 = self.elan_layer_2(x3)
-
- out = self.conv_layer_3(torch.cat([x1, x2, x3, x4], dim=1))
- return out
- class ELANLayerFPN(nn.Module):
- def __init__(self,
- in_dim,
- out_dim,
- expansions :List = [0.5, 0.5],
- branch_width :int = 4,
- branch_depth :int = 1,
- ):
- super(ELANLayerFPN, self).__init__()
- # Basic parameters
- inter_dim = round(in_dim * expansions[0])
- inter_dim2 = round(inter_dim * expansions[1])
- # Network structure
- self.cv1 = ConvModule(in_dim, inter_dim, kernel_size=1)
- self.cv2 = ConvModule(in_dim, inter_dim, kernel_size=1)
- self.cv3 = nn.ModuleList()
- for idx in range(round(branch_width)):
- if idx == 0:
- cvs = [ConvModule(inter_dim, inter_dim2, kernel_size=3, padding=1)]
- else:
- cvs = [ConvModule(inter_dim2, inter_dim2, kernel_size=3, padding=1)]
- # deeper
- if round(branch_depth) > 1:
- for _ in range(1, round(branch_depth)):
- cvs.append(ConvModule(inter_dim2, inter_dim2, kernel_size=3, padding=1))
- self.cv3.append(nn.Sequential(*cvs))
- else:
- self.cv3.append(cvs[0])
- self.output_proj = ConvModule(inter_dim*2+inter_dim2*len(self.cv3), out_dim, kernel_size=1)
- def forward(self, x):
- x1 = self.cv1(x)
- x2 = self.cv2(x)
- inter_outs = [x1, x2]
- for m in self.cv3:
- y1 = inter_outs[-1]
- y2 = m(y1)
- inter_outs.append(y2)
- out = self.output_proj(torch.cat(inter_outs, dim=1))
- return out
|