import torch import torch.nn as nn from typing import List # --------------------- Basic modules --------------------- class ConvModule(nn.Module): def __init__(self, in_dim, # in channels out_dim, # out channels kernel_size=1, # kernel size padding=0, # padding stride=1, # padding dilation=1, # dilation ): super(ConvModule, self).__init__() self.conv = nn.Conv2d(in_dim, out_dim, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False) self.norm = nn.BatchNorm2d(out_dim) self.act = nn.SiLU(inplace=True) def forward(self, x): return self.act(self.norm(self.conv(x))) # ---------------------------- Basic Modules ---------------------------- class MDown(nn.Module): def __init__(self, in_dim: int, out_dim: int, ): super().__init__() inter_dim = out_dim // 2 self.downsample_1 = nn.Sequential( nn.MaxPool2d((2, 2), stride=2), ConvModule(in_dim, inter_dim, kernel_size=1) ) self.downsample_2 = nn.Sequential( ConvModule(in_dim, inter_dim, kernel_size=1), ConvModule(inter_dim, inter_dim, kernel_size=3, padding=1, stride=2) ) if in_dim == out_dim: self.output_proj = nn.Identity() else: self.output_proj = ConvModule(inter_dim * 2, out_dim, kernel_size=1) def forward(self, x): x1 = self.downsample_1(x) x2 = self.downsample_2(x) out = self.output_proj(torch.cat([x1, x2], dim=1)) return out class ELANLayer(nn.Module): def __init__(self, in_dim, out_dim, expansion :float = 0.5, num_blocks :int = 1, ) -> None: super(ELANLayer, self).__init__() self.inter_dim = round(in_dim * expansion) self.conv_layer_1 = ConvModule(in_dim, self.inter_dim, kernel_size=1) self.conv_layer_2 = ConvModule(in_dim, self.inter_dim, kernel_size=1) self.conv_layer_3 = ConvModule(self.inter_dim * 4, out_dim, kernel_size=1) self.elan_layer_1 = nn.Sequential(*[ConvModule(self.inter_dim, self.inter_dim, kernel_size=3, padding=1) for _ in range(num_blocks)]) self.elan_layer_2 = nn.Sequential(*[ConvModule(self.inter_dim, self.inter_dim, kernel_size=3, padding=1) for _ in range(num_blocks)]) def forward(self, x): # Input proj x1 = self.conv_layer_1(x) x2 = self.conv_layer_2(x) x3 = self.elan_layer_1(x2) x4 = self.elan_layer_2(x3) out = self.conv_layer_3(torch.cat([x1, x2, x3, x4], dim=1)) return out class ELANLayerFPN(nn.Module): def __init__(self, in_dim, out_dim, expansions :List = [0.5, 0.5], branch_width :int = 4, branch_depth :int = 1, ): super(ELANLayerFPN, self).__init__() # Basic parameters inter_dim = round(in_dim * expansions[0]) inter_dim2 = round(inter_dim * expansions[1]) # Network structure self.cv1 = ConvModule(in_dim, inter_dim, kernel_size=1) self.cv2 = ConvModule(in_dim, inter_dim, kernel_size=1) self.cv3 = nn.ModuleList() for idx in range(round(branch_width)): if idx == 0: cvs = [ConvModule(inter_dim, inter_dim2, kernel_size=3, padding=1)] else: cvs = [ConvModule(inter_dim2, inter_dim2, kernel_size=3, padding=1)] # deeper if round(branch_depth) > 1: for _ in range(1, round(branch_depth)): cvs.append(ConvModule(inter_dim2, inter_dim2, kernel_size=3, padding=1)) self.cv3.append(nn.Sequential(*cvs)) else: self.cv3.append(cvs[0]) self.output_proj = ConvModule(inter_dim*2+inter_dim2*len(self.cv3), out_dim, kernel_size=1) def forward(self, x): x1 = self.cv1(x) x2 = self.cv2(x) inter_outs = [x1, x2] for m in self.cv3: y1 = inter_outs[-1] y2 = m(y1) inter_outs.append(y2) out = self.output_proj(torch.cat(inter_outs, dim=1)) return out