| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 |
- import torch
- import torch.nn as nn
- from typing import List
- # -------------------- Detection Pred Layer --------------------
- ## Single-level pred layer
- class DetPredLayer(nn.Module):
- def __init__(self,
- cls_dim :int,
- reg_dim :int,
- stride :int,
- num_classes :int,
- anchor_sizes :List,
- ):
- super().__init__()
- # --------- Basic Parameters ----------
- self.stride = stride
- self.cls_dim = cls_dim
- self.reg_dim = reg_dim
- self.num_classes = num_classes
- # ------------------- Anchor box -------------------
- self.anchor_size = torch.as_tensor(anchor_sizes).float().view(-1, 2) # [A, 2]
- self.num_anchors = self.anchor_size.shape[0]
- # --------- Network Parameters ----------
- self.obj_pred = nn.Conv2d(self.cls_dim, 1 * self.num_anchors, kernel_size=1)
- self.cls_pred = nn.Conv2d(self.cls_dim, num_classes * self.num_anchors, kernel_size=1)
- self.reg_pred = nn.Conv2d(self.reg_dim, 4 * self.num_anchors, kernel_size=1)
- self.init_bias()
-
- def init_bias(self):
- # Init bias
- init_prob = 0.01
- bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
- # obj pred
- b = self.obj_pred.bias.view(1, -1)
- b.data.fill_(bias_value.item())
- self.obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- # cls pred
- b = self.cls_pred.bias.view(1, -1)
- b.data.fill_(bias_value.item())
- self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- # reg pred
- b = self.reg_pred.bias.view(-1, )
- b.data.fill_(1.0)
- self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- w = self.reg_pred.weight
- w.data.fill_(0.)
- self.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
- def generate_anchors(self, fmp_size):
- """
- fmp_size: (List) [H, W]
- """
- # 特征图的宽和高
- fmp_h, fmp_w = fmp_size
- # 生成网格的x坐标和y坐标
- anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
- # 将xy两部分的坐标拼起来:[H, W, 2] -> [HW, 2]
- anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
- # [HW, 2] -> [HW, A, 2] -> [M, 2], M=HWA
- anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1)
- anchor_xy = anchor_xy.view(-1, 2)
- # [A, 2] -> [1, A, 2] -> [HW, A, 2] -> [M, 2], M=HWA
- anchor_wh = self.anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1)
- anchor_wh = anchor_wh.view(-1, 2)
- anchors = torch.cat([anchor_xy, anchor_wh], dim=-1)
- return anchors
-
- def forward(self, cls_feat, reg_feat):
- # 预测层
- obj_pred = self.obj_pred(reg_feat)
- cls_pred = self.cls_pred(cls_feat)
- reg_pred = self.reg_pred(reg_feat)
- # 生成网格坐标
- B, _, H, W = cls_pred.size()
- fmp_size = [H, W]
- anchors = self.generate_anchors(fmp_size)
- anchors = anchors.to(cls_pred.device)
- # 对 pred 的size做一些view调整,便于后续的处理
- # [B, C*A, H, W] -> [B, H, W, C*A] -> [B, H*W*A, C]
- obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
- cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
- reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
-
- # 解算边界框坐标
- cxcy_pred = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride
- bwbh_pred = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
- pred_x1y1 = cxcy_pred - bwbh_pred * 0.5
- pred_x2y2 = cxcy_pred + bwbh_pred * 0.5
- box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
- # output dict
- outputs = {"pred_obj": obj_pred, # (torch.Tensor) [B, M, 1]
- "pred_cls": cls_pred, # (torch.Tensor) [B, M, C]
- "pred_reg": reg_pred, # (torch.Tensor) [B, M, 4]
- "pred_box": box_pred, # (torch.Tensor) [B, M, 4]
- "anchors" : anchors, # (torch.Tensor) [M, 2]
- "fmp_size": fmp_size,
- "stride" : self.stride, # (Int)
- }
- return outputs
- ## Multi-level pred layer
- class Yolov3DetPredLayer(nn.Module):
- def __init__(self, cfg):
- super().__init__()
- # --------- Basic Parameters ----------
- self.cfg = cfg
- # ----------- Network Parameters -----------
- ## pred layers
- self.multi_level_preds = nn.ModuleList(
- [DetPredLayer(cls_dim = round(cfg.head_dim * cfg.width),
- reg_dim = round(cfg.head_dim * cfg.width),
- stride = cfg.out_stride[level],
- anchor_sizes = cfg.anchor_size[level],
- num_classes = cfg.num_classes,)
- for level in range(cfg.num_levels)
- ])
- def forward(self, cls_feats, reg_feats):
- all_anchors = []
- all_strides = []
- all_fmp_sizes = []
- all_obj_preds = []
- all_cls_preds = []
- all_reg_preds = []
- all_box_preds = []
- for level in range(self.cfg.num_levels):
- # -------------- Single-level prediction --------------
- outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
- # collect results
- all_obj_preds.append(outputs["pred_obj"])
- all_cls_preds.append(outputs["pred_cls"])
- all_reg_preds.append(outputs["pred_reg"])
- all_box_preds.append(outputs["pred_box"])
- all_fmp_sizes.append(outputs["fmp_size"])
- all_anchors.append(outputs["anchors"])
-
- # output dict
- outputs = {"pred_obj": all_obj_preds, # List(Tensor) [B, M, 1]
- "pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
- "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
- "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
- "fmp_sizes": all_fmp_sizes, # List(Tensor) [M, 1]
- "anchors": all_anchors, # List(Tensor) [M, 2]
- "strides": self.cfg.out_stride, # List(Int) = [8, 16, 32]
- }
- return outputs
- if __name__=='__main__':
- import time
- from thop import profile
- # Model config
-
- # YOLOv8-Base config
- class Yolov3BaseConfig(object):
- def __init__(self) -> None:
- # ---------------- Model config ----------------
- self.width = 1.0
- self.depth = 1.0
- self.out_stride = [8, 16, 32]
- self.max_stride = 32
- self.num_levels = 3
- ## Head
- self.head_dim = 256
- self.anchor_size = {0: [[10, 13], [16, 30], [33, 23]],
- 1: [[30, 61], [62, 45], [59, 119]],
- 2: [[116, 90], [156, 198], [373, 326]]}
- cfg = Yolov3BaseConfig()
- cfg.num_classes = 20
- # Build a pred layer
- pred = Yolov3DetPredLayer(cfg)
- # Inference
- cls_feats = [torch.randn(1, cfg.head_dim, 80, 80),
- torch.randn(1, cfg.head_dim, 40, 40),
- torch.randn(1, cfg.head_dim, 20, 20),]
- reg_feats = [torch.randn(1, cfg.head_dim, 80, 80),
- torch.randn(1, cfg.head_dim, 40, 40),
- torch.randn(1, cfg.head_dim, 20, 20),]
- t0 = time.time()
- output = pred(cls_feats, reg_feats)
- t1 = time.time()
- print('Time: ', t1 - t0)
- print('====== Pred output ======= ')
- pred_obj = output["pred_obj"]
- pred_cls = output["pred_cls"]
- pred_reg = output["pred_reg"]
- pred_box = output["pred_box"]
- anchors = output["anchors"]
-
- for level in range(cfg.num_levels):
- print("- Level-{} : objectness -> {}".format(level, pred_obj[level].shape))
- print("- Level-{} : classification -> {}".format(level, pred_cls[level].shape))
- print("- Level-{} : delta regression -> {}".format(level, pred_reg[level].shape))
- print("- Level-{} : bbox regression -> {}".format(level, pred_box[level].shape))
- print("- Level-{} : anchor boxes -> {}".format(level, anchors[level].shape))
- flops, params = profile(pred, inputs=(cls_feats, reg_feats, ), verbose=False)
- print('==============================')
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Params : {:.2f} M'.format(params / 1e6))
|