import torch import torch.nn as nn from typing import List # -------------------- Detection Pred Layer -------------------- ## Single-level pred layer class DetPredLayer(nn.Module): def __init__(self, cls_dim :int, reg_dim :int, stride :int, num_classes :int, anchor_sizes :List, ): super().__init__() # --------- Basic Parameters ---------- self.stride = stride self.cls_dim = cls_dim self.reg_dim = reg_dim self.num_classes = num_classes # ------------------- Anchor box ------------------- self.anchor_size = torch.as_tensor(anchor_sizes).float().view(-1, 2) # [A, 2] self.num_anchors = self.anchor_size.shape[0] # --------- Network Parameters ---------- self.obj_pred = nn.Conv2d(self.cls_dim, 1 * self.num_anchors, kernel_size=1) self.cls_pred = nn.Conv2d(self.cls_dim, num_classes * self.num_anchors, kernel_size=1) self.reg_pred = nn.Conv2d(self.reg_dim, 4 * self.num_anchors, kernel_size=1) self.init_bias() def init_bias(self): # Init bias init_prob = 0.01 bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob)) # obj pred b = self.obj_pred.bias.view(1, -1) b.data.fill_(bias_value.item()) self.obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) # cls pred b = self.cls_pred.bias.view(1, -1) b.data.fill_(bias_value.item()) self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) # reg pred b = self.reg_pred.bias.view(-1, ) b.data.fill_(1.0) self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) w = self.reg_pred.weight w.data.fill_(0.) self.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True) def generate_anchors(self, fmp_size): """ fmp_size: (List) [H, W] """ # 特征图的宽和高 fmp_h, fmp_w = fmp_size # 生成网格的x坐标和y坐标 anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)]) # 将xy两部分的坐标拼起来:[H, W, 2] -> [HW, 2] anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2) # [HW, 2] -> [HW, A, 2] -> [M, 2], M=HWA anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1) anchor_xy = anchor_xy.view(-1, 2) # [A, 2] -> [1, A, 2] -> [HW, A, 2] -> [M, 2], M=HWA anchor_wh = self.anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1) anchor_wh = anchor_wh.view(-1, 2) anchors = torch.cat([anchor_xy, anchor_wh], dim=-1) return anchors def forward(self, cls_feat, reg_feat): # 预测层 obj_pred = self.obj_pred(reg_feat) cls_pred = self.cls_pred(cls_feat) reg_pred = self.reg_pred(reg_feat) # 生成网格坐标 B, _, H, W = cls_pred.size() fmp_size = [H, W] anchors = self.generate_anchors(fmp_size) anchors = anchors.to(cls_pred.device) # 对 pred 的size做一些view调整,便于后续的处理 # [B, C*A, H, W] -> [B, H, W, C*A] -> [B, H*W*A, C] obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1) cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes) reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4) # 解算边界框坐标 cxcy_pred = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride bwbh_pred = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:] pred_x1y1 = cxcy_pred - bwbh_pred * 0.5 pred_x2y2 = cxcy_pred + bwbh_pred * 0.5 box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1) # output dict outputs = {"pred_obj": obj_pred, # (torch.Tensor) [B, M, 1] "pred_cls": cls_pred, # (torch.Tensor) [B, M, C] "pred_reg": reg_pred, # (torch.Tensor) [B, M, 4] "pred_box": box_pred, # (torch.Tensor) [B, M, 4] "anchors" : anchors, # (torch.Tensor) [M, 2] "fmp_size": fmp_size, "stride" : self.stride, # (Int) } return outputs ## Multi-level pred layer class Yolov3DetPredLayer(nn.Module): def __init__(self, cfg): super().__init__() # --------- Basic Parameters ---------- self.cfg = cfg # ----------- Network Parameters ----------- ## pred layers self.multi_level_preds = nn.ModuleList( [DetPredLayer(cls_dim = round(cfg.head_dim * cfg.width), reg_dim = round(cfg.head_dim * cfg.width), stride = cfg.out_stride[level], anchor_sizes = cfg.anchor_size[level], num_classes = cfg.num_classes,) for level in range(cfg.num_levels) ]) def forward(self, cls_feats, reg_feats): all_anchors = [] all_strides = [] all_fmp_sizes = [] all_obj_preds = [] all_cls_preds = [] all_reg_preds = [] all_box_preds = [] for level in range(self.cfg.num_levels): # -------------- Single-level prediction -------------- outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level]) # collect results all_obj_preds.append(outputs["pred_obj"]) all_cls_preds.append(outputs["pred_cls"]) all_reg_preds.append(outputs["pred_reg"]) all_box_preds.append(outputs["pred_box"]) all_fmp_sizes.append(outputs["fmp_size"]) all_anchors.append(outputs["anchors"]) # output dict outputs = {"pred_obj": all_obj_preds, # List(Tensor) [B, M, 1] "pred_cls": all_cls_preds, # List(Tensor) [B, M, C] "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)] "pred_box": all_box_preds, # List(Tensor) [B, M, 4] "fmp_sizes": all_fmp_sizes, # List(Tensor) [M, 1] "anchors": all_anchors, # List(Tensor) [M, 2] "strides": self.cfg.out_stride, # List(Int) = [8, 16, 32] } return outputs if __name__=='__main__': import time from thop import profile # Model config # YOLOv8-Base config class Yolov3BaseConfig(object): def __init__(self) -> None: # ---------------- Model config ---------------- self.width = 1.0 self.depth = 1.0 self.out_stride = [8, 16, 32] self.max_stride = 32 self.num_levels = 3 ## Head self.head_dim = 256 self.anchor_size = {0: [[10, 13], [16, 30], [33, 23]], 1: [[30, 61], [62, 45], [59, 119]], 2: [[116, 90], [156, 198], [373, 326]]} cfg = Yolov3BaseConfig() cfg.num_classes = 20 # Build a pred layer pred = Yolov3DetPredLayer(cfg) # Inference cls_feats = [torch.randn(1, cfg.head_dim, 80, 80), torch.randn(1, cfg.head_dim, 40, 40), torch.randn(1, cfg.head_dim, 20, 20),] reg_feats = [torch.randn(1, cfg.head_dim, 80, 80), torch.randn(1, cfg.head_dim, 40, 40), torch.randn(1, cfg.head_dim, 20, 20),] t0 = time.time() output = pred(cls_feats, reg_feats) t1 = time.time() print('Time: ', t1 - t0) print('====== Pred output ======= ') pred_obj = output["pred_obj"] pred_cls = output["pred_cls"] pred_reg = output["pred_reg"] pred_box = output["pred_box"] anchors = output["anchors"] for level in range(cfg.num_levels): print("- Level-{} : objectness -> {}".format(level, pred_obj[level].shape)) print("- Level-{} : classification -> {}".format(level, pred_cls[level].shape)) print("- Level-{} : delta regression -> {}".format(level, pred_reg[level].shape)) print("- Level-{} : bbox regression -> {}".format(level, pred_box[level].shape)) print("- Level-{} : anchor boxes -> {}".format(level, anchors[level].shape)) flops, params = profile(pred, inputs=(cls_feats, reg_feats, ), verbose=False) print('==============================') print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2)) print('Params : {:.2f} M'.format(params / 1e6))