yolov3_pred.py 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217
  1. import torch
  2. import torch.nn as nn
  3. from typing import List
  4. # -------------------- Detection Pred Layer --------------------
  5. ## Single-level pred layer
  6. class DetPredLayer(nn.Module):
  7. def __init__(self,
  8. cls_dim :int,
  9. reg_dim :int,
  10. stride :int,
  11. num_classes :int,
  12. anchor_sizes :List,
  13. ):
  14. super().__init__()
  15. # --------- Basic Parameters ----------
  16. self.stride = stride
  17. self.cls_dim = cls_dim
  18. self.reg_dim = reg_dim
  19. self.num_classes = num_classes
  20. # ------------------- Anchor box -------------------
  21. self.anchor_size = torch.as_tensor(anchor_sizes).float().view(-1, 2) # [A, 2]
  22. self.num_anchors = self.anchor_size.shape[0]
  23. # --------- Network Parameters ----------
  24. self.obj_pred = nn.Conv2d(self.cls_dim, 1 * self.num_anchors, kernel_size=1)
  25. self.cls_pred = nn.Conv2d(self.cls_dim, num_classes * self.num_anchors, kernel_size=1)
  26. self.reg_pred = nn.Conv2d(self.reg_dim, 4 * self.num_anchors, kernel_size=1)
  27. self.init_bias()
  28. def init_bias(self):
  29. # Init bias
  30. init_prob = 0.01
  31. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  32. # obj pred
  33. b = self.obj_pred.bias.view(1, -1)
  34. b.data.fill_(bias_value.item())
  35. self.obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  36. # cls pred
  37. b = self.cls_pred.bias.view(1, -1)
  38. b.data.fill_(bias_value.item())
  39. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  40. # reg pred
  41. b = self.reg_pred.bias.view(-1, )
  42. b.data.fill_(1.0)
  43. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  44. w = self.reg_pred.weight
  45. w.data.fill_(0.)
  46. self.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
  47. def generate_anchors(self, fmp_size):
  48. """
  49. fmp_size: (List) [H, W]
  50. """
  51. # 特征图的宽和高
  52. fmp_h, fmp_w = fmp_size
  53. # 生成网格的x坐标和y坐标
  54. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  55. # 将xy两部分的坐标拼起来:[H, W, 2] -> [HW, 2]
  56. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  57. # [HW, 2] -> [HW, A, 2] -> [M, 2], M=HWA
  58. anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1)
  59. anchor_xy = anchor_xy.view(-1, 2)
  60. # [A, 2] -> [1, A, 2] -> [HW, A, 2] -> [M, 2], M=HWA
  61. anchor_wh = self.anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1)
  62. anchor_wh = anchor_wh.view(-1, 2)
  63. anchors = torch.cat([anchor_xy, anchor_wh], dim=-1)
  64. return anchors
  65. def forward(self, cls_feat, reg_feat):
  66. # 预测层
  67. obj_pred = self.obj_pred(reg_feat)
  68. cls_pred = self.cls_pred(cls_feat)
  69. reg_pred = self.reg_pred(reg_feat)
  70. # 生成网格坐标
  71. B, _, H, W = cls_pred.size()
  72. fmp_size = [H, W]
  73. anchors = self.generate_anchors(fmp_size)
  74. anchors = anchors.to(cls_pred.device)
  75. # 对 pred 的size做一些view调整,便于后续的处理
  76. # [B, C*A, H, W] -> [B, H, W, C*A] -> [B, H*W*A, C]
  77. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  78. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  79. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  80. # 解算边界框坐标
  81. cxcy_pred = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride
  82. bwbh_pred = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
  83. pred_x1y1 = cxcy_pred - bwbh_pred * 0.5
  84. pred_x2y2 = cxcy_pred + bwbh_pred * 0.5
  85. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  86. # output dict
  87. outputs = {"pred_obj": obj_pred, # (torch.Tensor) [B, M, 1]
  88. "pred_cls": cls_pred, # (torch.Tensor) [B, M, C]
  89. "pred_reg": reg_pred, # (torch.Tensor) [B, M, 4]
  90. "pred_box": box_pred, # (torch.Tensor) [B, M, 4]
  91. "anchors" : anchors, # (torch.Tensor) [M, 2]
  92. "fmp_size": fmp_size,
  93. "stride" : self.stride, # (Int)
  94. }
  95. return outputs
  96. ## Multi-level pred layer
  97. class Yolov3DetPredLayer(nn.Module):
  98. def __init__(self, cfg):
  99. super().__init__()
  100. # --------- Basic Parameters ----------
  101. self.cfg = cfg
  102. # ----------- Network Parameters -----------
  103. ## pred layers
  104. self.multi_level_preds = nn.ModuleList(
  105. [DetPredLayer(cls_dim = round(cfg.head_dim * cfg.width),
  106. reg_dim = round(cfg.head_dim * cfg.width),
  107. stride = cfg.out_stride[level],
  108. anchor_sizes = cfg.anchor_size[level],
  109. num_classes = cfg.num_classes,)
  110. for level in range(cfg.num_levels)
  111. ])
  112. def forward(self, cls_feats, reg_feats):
  113. all_anchors = []
  114. all_strides = []
  115. all_fmp_sizes = []
  116. all_obj_preds = []
  117. all_cls_preds = []
  118. all_reg_preds = []
  119. all_box_preds = []
  120. for level in range(self.cfg.num_levels):
  121. # -------------- Single-level prediction --------------
  122. outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
  123. # collect results
  124. all_obj_preds.append(outputs["pred_obj"])
  125. all_cls_preds.append(outputs["pred_cls"])
  126. all_reg_preds.append(outputs["pred_reg"])
  127. all_box_preds.append(outputs["pred_box"])
  128. all_fmp_sizes.append(outputs["fmp_size"])
  129. all_anchors.append(outputs["anchors"])
  130. # output dict
  131. outputs = {"pred_obj": all_obj_preds, # List(Tensor) [B, M, 1]
  132. "pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  133. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
  134. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  135. "fmp_sizes": all_fmp_sizes, # List(Tensor) [M, 1]
  136. "anchors": all_anchors, # List(Tensor) [M, 2]
  137. "strides": self.cfg.out_stride, # List(Int) = [8, 16, 32]
  138. }
  139. return outputs
  140. if __name__=='__main__':
  141. import time
  142. from thop import profile
  143. # Model config
  144. # YOLOv8-Base config
  145. class Yolov3BaseConfig(object):
  146. def __init__(self) -> None:
  147. # ---------------- Model config ----------------
  148. self.width = 1.0
  149. self.depth = 1.0
  150. self.out_stride = [8, 16, 32]
  151. self.max_stride = 32
  152. self.num_levels = 3
  153. ## Head
  154. self.head_dim = 256
  155. self.anchor_size = {0: [[10, 13], [16, 30], [33, 23]],
  156. 1: [[30, 61], [62, 45], [59, 119]],
  157. 2: [[116, 90], [156, 198], [373, 326]]}
  158. cfg = Yolov3BaseConfig()
  159. cfg.num_classes = 20
  160. # Build a pred layer
  161. pred = Yolov3DetPredLayer(cfg)
  162. # Inference
  163. cls_feats = [torch.randn(1, cfg.head_dim, 80, 80),
  164. torch.randn(1, cfg.head_dim, 40, 40),
  165. torch.randn(1, cfg.head_dim, 20, 20),]
  166. reg_feats = [torch.randn(1, cfg.head_dim, 80, 80),
  167. torch.randn(1, cfg.head_dim, 40, 40),
  168. torch.randn(1, cfg.head_dim, 20, 20),]
  169. t0 = time.time()
  170. output = pred(cls_feats, reg_feats)
  171. t1 = time.time()
  172. print('Time: ', t1 - t0)
  173. print('====== Pred output ======= ')
  174. pred_obj = output["pred_obj"]
  175. pred_cls = output["pred_cls"]
  176. pred_reg = output["pred_reg"]
  177. pred_box = output["pred_box"]
  178. anchors = output["anchors"]
  179. for level in range(cfg.num_levels):
  180. print("- Level-{} : objectness -> {}".format(level, pred_obj[level].shape))
  181. print("- Level-{} : classification -> {}".format(level, pred_cls[level].shape))
  182. print("- Level-{} : delta regression -> {}".format(level, pred_reg[level].shape))
  183. print("- Level-{} : bbox regression -> {}".format(level, pred_box[level].shape))
  184. print("- Level-{} : anchor boxes -> {}".format(level, anchors[level].shape))
  185. flops, params = profile(pred, inputs=(cls_feats, reg_feats, ), verbose=False)
  186. print('==============================')
  187. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  188. print('Params : {:.2f} M'.format(params / 1e6))