|
|
@@ -1,210 +1,23 @@
|
|
|
-import torch
|
|
|
-import torch.nn as nn
|
|
|
-import torch.nn.functional as F
|
|
|
-from utils.box_ops import box_iou, bbox_iou
|
|
|
-
|
|
|
-
|
|
|
-# -------------------------- Basic Functions --------------------------
|
|
|
-def select_candidates_in_gts(xy_centers, gt_bboxes, eps=1e-9):
|
|
|
- """select the positive anchors's center in gt
|
|
|
- Args:
|
|
|
- xy_centers (Tensor): shape(bs*n_max_boxes, num_total_anchors, 4)
|
|
|
- gt_bboxes (Tensor): shape(bs, n_max_boxes, 4)
|
|
|
- Return:
|
|
|
- (Tensor): shape(bs, n_max_boxes, num_total_anchors)
|
|
|
- """
|
|
|
- n_anchors = xy_centers.size(0)
|
|
|
- bs, n_max_boxes, _ = gt_bboxes.size()
|
|
|
- _gt_bboxes = gt_bboxes.reshape([-1, 4])
|
|
|
- xy_centers = xy_centers.unsqueeze(0).repeat(bs * n_max_boxes, 1, 1)
|
|
|
- gt_bboxes_lt = _gt_bboxes[:, 0:2].unsqueeze(1).repeat(1, n_anchors, 1)
|
|
|
- gt_bboxes_rb = _gt_bboxes[:, 2:4].unsqueeze(1).repeat(1, n_anchors, 1)
|
|
|
- b_lt = xy_centers - gt_bboxes_lt
|
|
|
- b_rb = gt_bboxes_rb - xy_centers
|
|
|
- bbox_deltas = torch.cat([b_lt, b_rb], dim=-1)
|
|
|
- bbox_deltas = bbox_deltas.reshape([bs, n_max_boxes, n_anchors, -1])
|
|
|
- return (bbox_deltas.min(axis=-1)[0] > eps).to(gt_bboxes.dtype)
|
|
|
-
|
|
|
-def select_highest_overlaps(mask_pos, overlaps, n_max_boxes):
|
|
|
- """if an anchor box is assigned to multiple gts,
|
|
|
- the one with the highest iou will be selected.
|
|
|
- Args:
|
|
|
- mask_pos (Tensor): shape(bs, n_max_boxes, num_total_anchors)
|
|
|
- overlaps (Tensor): shape(bs, n_max_boxes, num_total_anchors)
|
|
|
- Return:
|
|
|
- target_gt_idx (Tensor): shape(bs, num_total_anchors)
|
|
|
- fg_mask (Tensor): shape(bs, num_total_anchors)
|
|
|
- mask_pos (Tensor): shape(bs, n_max_boxes, num_total_anchors)
|
|
|
- """
|
|
|
- fg_mask = mask_pos.sum(axis=-2)
|
|
|
- if fg_mask.max() > 1:
|
|
|
- mask_multi_gts = (fg_mask.unsqueeze(1) > 1).repeat([1, n_max_boxes, 1])
|
|
|
- max_overlaps_idx = overlaps.argmax(axis=1)
|
|
|
- is_max_overlaps = F.one_hot(max_overlaps_idx, n_max_boxes)
|
|
|
- is_max_overlaps = is_max_overlaps.permute(0, 2, 1).to(overlaps.dtype)
|
|
|
- mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos)
|
|
|
- fg_mask = mask_pos.sum(axis=-2)
|
|
|
- target_gt_idx = mask_pos.argmax(axis=-2)
|
|
|
- return target_gt_idx, fg_mask , mask_pos
|
|
|
-
|
|
|
-def iou_calculator(box1, box2, eps=1e-9):
|
|
|
- """Calculate iou for batch
|
|
|
- Args:
|
|
|
- box1 (Tensor): shape(bs, n_max_boxes, 1, 4)
|
|
|
- box2 (Tensor): shape(bs, 1, num_total_anchors, 4)
|
|
|
- Return:
|
|
|
- (Tensor): shape(bs, n_max_boxes, num_total_anchors)
|
|
|
- """
|
|
|
- box1 = box1.unsqueeze(2) # [N, M1, 4] -> [N, M1, 1, 4]
|
|
|
- box2 = box2.unsqueeze(1) # [N, M2, 4] -> [N, 1, M2, 4]
|
|
|
- px1y1, px2y2 = box1[:, :, :, 0:2], box1[:, :, :, 2:4]
|
|
|
- gx1y1, gx2y2 = box2[:, :, :, 0:2], box2[:, :, :, 2:4]
|
|
|
- x1y1 = torch.maximum(px1y1, gx1y1)
|
|
|
- x2y2 = torch.minimum(px2y2, gx2y2)
|
|
|
- overlap = (x2y2 - x1y1).clip(0).prod(-1)
|
|
|
- area1 = (px2y2 - px1y1).clip(0).prod(-1)
|
|
|
- area2 = (gx2y2 - gx1y1).clip(0).prod(-1)
|
|
|
- union = area1 + area2 - overlap + eps
|
|
|
-
|
|
|
- return overlap / union
|
|
|
-
|
|
|
-
|
|
|
-# -------------------------- Task Aligned Assigner --------------------------
|
|
|
-class TaskAlignedAssigner(nn.Module):
|
|
|
- def __init__(self, topk=10, alpha=0.5, beta=6.0, eps=1e-9, num_classes=80):
|
|
|
- super(TaskAlignedAssigner, self).__init__()
|
|
|
- self.topk = topk
|
|
|
- self.num_classes = num_classes
|
|
|
- self.bg_idx = num_classes
|
|
|
- self.alpha = alpha
|
|
|
- self.beta = beta
|
|
|
- self.eps = eps
|
|
|
-
|
|
|
- @torch.no_grad()
|
|
|
- def forward(self,
|
|
|
- pd_scores,
|
|
|
- pd_bboxes,
|
|
|
- anc_points,
|
|
|
- gt_labels,
|
|
|
- gt_bboxes):
|
|
|
- """This code referenced to
|
|
|
- https://github.com/Nioolek/PPYOLOE_pytorch/blob/master/ppyoloe/assigner/tal_assigner.py
|
|
|
- Args:
|
|
|
- pd_scores (Tensor): shape(bs, num_total_anchors, num_classes)
|
|
|
- pd_bboxes (Tensor): shape(bs, num_total_anchors, 4)
|
|
|
- anc_points (Tensor): shape(num_total_anchors, 2)
|
|
|
- gt_labels (Tensor): shape(bs, n_max_boxes, 1)
|
|
|
- gt_bboxes (Tensor): shape(bs, n_max_boxes, 4)
|
|
|
- Returns:
|
|
|
- target_labels (Tensor): shape(bs, num_total_anchors)
|
|
|
- target_bboxes (Tensor): shape(bs, num_total_anchors, 4)
|
|
|
- target_scores (Tensor): shape(bs, num_total_anchors, num_classes)
|
|
|
- fg_mask (Tensor): shape(bs, num_total_anchors)
|
|
|
- """
|
|
|
- self.bs = pd_scores.size(0)
|
|
|
- self.n_max_boxes = gt_bboxes.size(1)
|
|
|
-
|
|
|
- mask_pos, align_metric, overlaps = self.get_pos_mask(
|
|
|
- pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points)
|
|
|
-
|
|
|
- target_gt_idx, fg_mask, mask_pos = select_highest_overlaps(
|
|
|
- mask_pos, overlaps, self.n_max_boxes)
|
|
|
-
|
|
|
- # assigned target
|
|
|
- target_labels, target_bboxes, target_scores = self.get_targets(
|
|
|
- gt_labels, gt_bboxes, target_gt_idx, fg_mask)
|
|
|
-
|
|
|
- # normalize
|
|
|
- align_metric *= mask_pos
|
|
|
- pos_align_metrics = align_metric.amax(axis=-1, keepdim=True) # b, max_num_obj
|
|
|
- pos_overlaps = (overlaps * mask_pos).amax(axis=-1, keepdim=True) # b, max_num_obj
|
|
|
- norm_align_metric = (align_metric * pos_overlaps / (pos_align_metrics + self.eps)).amax(-2).unsqueeze(-1)
|
|
|
- target_scores = target_scores * norm_align_metric
|
|
|
-
|
|
|
- return target_labels, target_bboxes, target_scores, fg_mask.bool(), target_gt_idx
|
|
|
-
|
|
|
-
|
|
|
- def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points):
|
|
|
- # get anchor_align metric, (b, max_num_obj, h*w)
|
|
|
- align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes)
|
|
|
- # get in_gts mask, (b, max_num_obj, h*w)
|
|
|
- mask_in_gts = select_candidates_in_gts(anc_points, gt_bboxes)
|
|
|
- # get topk_metric mask, (b, max_num_obj, h*w)
|
|
|
- mask_topk = self.select_topk_candidates(align_metric * mask_in_gts)
|
|
|
- # merge all mask to a final mask, (b, max_num_obj, h*w)
|
|
|
- mask_pos = mask_topk * mask_in_gts
|
|
|
-
|
|
|
- return mask_pos, align_metric, overlaps
|
|
|
-
|
|
|
-
|
|
|
- def get_box_metrics(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes):
|
|
|
- ind = torch.zeros([2, self.bs, self.n_max_boxes], dtype=torch.long) # 2, b, max_num_obj
|
|
|
- ind[0] = torch.arange(end=self.bs).view(-1, 1).repeat(1, self.n_max_boxes) # b, max_num_obj
|
|
|
- ind[1] = gt_labels.long().squeeze(-1) # b, max_num_obj
|
|
|
- # get the scores of each grid for each gt cls
|
|
|
- bbox_scores = pd_scores[ind[0], :, ind[1]] # b, max_num_obj, h*w
|
|
|
-
|
|
|
- overlaps = bbox_iou(gt_bboxes.unsqueeze(2), pd_bboxes.unsqueeze(1), xywh=False).squeeze(3).clamp(0)
|
|
|
- align_metric = bbox_scores.pow(self.alpha) * overlaps.pow(self.beta)
|
|
|
-
|
|
|
- return align_metric, overlaps
|
|
|
-
|
|
|
-
|
|
|
- def select_topk_candidates(self, metrics, largest=True):
|
|
|
- """
|
|
|
- Args:
|
|
|
- metrics: (b, max_num_obj, h*w).
|
|
|
- topk_mask: (b, max_num_obj, topk) or None
|
|
|
- """
|
|
|
+# ---------------------------------------------------------------------
|
|
|
+# Copyright (c) OpenMMLab. All rights reserved.
|
|
|
+# ---------------------------------------------------------------------
|
|
|
|
|
|
- num_anchors = metrics.shape[-1] # h*w
|
|
|
- # (b, max_num_obj, topk)
|
|
|
- topk_metrics, topk_idxs = torch.topk(metrics, self.topk, dim=-1, largest=largest)
|
|
|
- topk_mask = (topk_metrics.max(-1, keepdim=True)[0] > self.eps).tile([1, 1, self.topk])
|
|
|
- # (b, max_num_obj, topk)
|
|
|
- topk_idxs[~topk_mask] = 0
|
|
|
- # (b, max_num_obj, topk, h*w) -> (b, max_num_obj, h*w)
|
|
|
- is_in_topk = F.one_hot(topk_idxs, num_anchors).sum(-2)
|
|
|
- # filter invalid bboxes
|
|
|
- is_in_topk = torch.where(is_in_topk > 1, 0, is_in_topk)
|
|
|
- return is_in_topk.to(metrics.dtype)
|
|
|
|
|
|
+import torch
|
|
|
+import torch.nn.functional as F
|
|
|
+from utils.box_ops import *
|
|
|
|
|
|
- def get_targets(self, gt_labels, gt_bboxes, target_gt_idx, fg_mask):
|
|
|
- """
|
|
|
- Args:
|
|
|
- gt_labels: (b, max_num_obj, 1)
|
|
|
- gt_bboxes: (b, max_num_obj, 4)
|
|
|
- target_gt_idx: (b, h*w)
|
|
|
- fg_mask: (b, h*w)
|
|
|
- """
|
|
|
-
|
|
|
- # assigned target labels, (b, 1)
|
|
|
- batch_ind = torch.arange(end=self.bs, dtype=torch.int64, device=gt_labels.device)[..., None]
|
|
|
- target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes # (b, h*w)
|
|
|
- target_labels = gt_labels.long().flatten()[target_gt_idx] # (b, h*w)
|
|
|
-
|
|
|
- # assigned target boxes, (b, max_num_obj, 4) -> (b, h*w)
|
|
|
- target_bboxes = gt_bboxes.view(-1, 4)[target_gt_idx]
|
|
|
-
|
|
|
- # assigned target scores
|
|
|
- target_labels.clamp(0)
|
|
|
- target_scores = F.one_hot(target_labels, self.num_classes) # (b, h*w, 80)
|
|
|
- fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes) # (b, h*w, 80)
|
|
|
- target_scores = torch.where(fg_scores_mask > 0, target_scores, 0)
|
|
|
-
|
|
|
- return target_labels, target_bboxes, target_scores
|
|
|
-
|
|
|
|
|
|
-# -------------------------- Aligned SimOTA Assigner --------------------------
|
|
|
+# RTMDet's Assigner
|
|
|
class AlignedSimOTA(object):
|
|
|
"""
|
|
|
- This code referenced to https://github.com/Megvii-BaseDetection/YOLOX/blob/main/yolox/models/yolo_head.py
|
|
|
+ This code referenced to https://github.com/open-mmlab/mmyolo/models/task_modules/assigners/batch_dsl_assigner.py
|
|
|
"""
|
|
|
- def __init__(self, num_classes, center_sampling_radius, topk_candidate ):
|
|
|
+ def __init__(self, num_classes=80, soft_center_radius=3.0, topk_candidate=13, iou_weight=3.0):
|
|
|
self.num_classes = num_classes
|
|
|
- self.center_sampling_radius = center_sampling_radius
|
|
|
+ self.soft_center_radius = soft_center_radius
|
|
|
self.topk_candidate = topk_candidate
|
|
|
+ self.iou_weight = iou_weight
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
@@ -213,161 +26,151 @@ class AlignedSimOTA(object):
|
|
|
anchors,
|
|
|
pred_cls,
|
|
|
pred_box,
|
|
|
- tgt_labels,
|
|
|
- tgt_bboxes):
|
|
|
+ gt_labels,
|
|
|
+ gt_bboxes):
|
|
|
# [M,]
|
|
|
- strides_tensor = torch.cat([torch.ones_like(anchor_i[:, 0]) * stride_i
|
|
|
+ strides = torch.cat([torch.ones_like(anchor_i[:, 0]) * stride_i
|
|
|
for stride_i, anchor_i in zip(fpn_strides, anchors)], dim=-1)
|
|
|
# List[F, M, 2] -> [M, 2]
|
|
|
anchors = torch.cat(anchors, dim=0)
|
|
|
- num_anchor = anchors.shape[0]
|
|
|
- num_gt = len(tgt_labels)
|
|
|
-
|
|
|
- # ----------------------- Find inside points -----------------------
|
|
|
- fg_mask, is_in_boxes_and_center = self.get_in_boxes_info(
|
|
|
- tgt_bboxes, anchors, strides_tensor, num_anchor, num_gt)
|
|
|
- cls_preds = pred_cls[fg_mask].float() # [Mp, C]
|
|
|
- box_preds = pred_box[fg_mask].float() # [Mp, 4]
|
|
|
-
|
|
|
- # ----------------------- Reg cost -----------------------
|
|
|
- pair_wise_ious, _ = box_iou(tgt_bboxes, box_preds) # [N, Mp]
|
|
|
- reg_cost = -torch.log(pair_wise_ious + 1e-8) # [N, Mp]
|
|
|
-
|
|
|
- # ----------------------- Cls cost -----------------------
|
|
|
- with torch.cuda.amp.autocast(enabled=False):
|
|
|
- # [Mp, C] -> [N, Mp, C]
|
|
|
- score_preds = cls_preds.sigmoid_().unsqueeze(0).repeat(num_gt, 1, 1)
|
|
|
- # prepare cls_target
|
|
|
- cls_targets = F.one_hot(tgt_labels.long(), self.num_classes).float()
|
|
|
- cls_targets = cls_targets.unsqueeze(1).repeat(1, score_preds.size(1), 1)
|
|
|
- cls_targets *= pair_wise_ious.unsqueeze(-1) # iou-aware
|
|
|
- # [N, Mp]
|
|
|
- cls_cost = F.binary_cross_entropy(score_preds, cls_targets, reduction="none").sum(-1)
|
|
|
- del score_preds
|
|
|
-
|
|
|
- #----------------------- Dynamic K-Matching -----------------------
|
|
|
- cost_matrix = (
|
|
|
- cls_cost
|
|
|
- + 3.0 * reg_cost
|
|
|
- + 100000.0 * (~is_in_boxes_and_center)
|
|
|
- ) # [N, Mp]
|
|
|
-
|
|
|
+ num_gt = len(gt_labels)
|
|
|
+
|
|
|
+ # check gt
|
|
|
+ if num_gt == 0 or gt_bboxes.max().item() == 0.:
|
|
|
+ return {
|
|
|
+ 'assigned_labels': gt_labels.new_full(pred_cls[..., 0].shape,
|
|
|
+ self.num_classes,
|
|
|
+ dtype=torch.long),
|
|
|
+ 'assigned_bboxes': gt_bboxes.new_full(pred_box.shape, 0),
|
|
|
+ 'assign_metrics': gt_bboxes.new_full(pred_cls[..., 0].shape, 0)
|
|
|
+ }
|
|
|
+
|
|
|
+ # get inside points: [N, M]
|
|
|
+ is_in_gt = self.find_inside_points(gt_bboxes, anchors)
|
|
|
+ valid_mask = is_in_gt.sum(dim=0) > 0 # [M,]
|
|
|
+
|
|
|
+ # ----------------------------------- soft center prior -----------------------------------
|
|
|
+ gt_center = (gt_bboxes[..., :2] + gt_bboxes[..., 2:]) / 2.0
|
|
|
+ distance = (anchors.unsqueeze(0) - gt_center.unsqueeze(1)
|
|
|
+ ).pow(2).sum(-1).sqrt() / strides.unsqueeze(0) # [N, M]
|
|
|
+ distance = distance * valid_mask.unsqueeze(0)
|
|
|
+ soft_center_prior = torch.pow(10, distance - self.soft_center_radius)
|
|
|
+
|
|
|
+ # ----------------------------------- regression cost -----------------------------------
|
|
|
+ pair_wise_ious, _ = box_iou(gt_bboxes, pred_box) # [N, M]
|
|
|
+ pair_wise_ious_loss = -torch.log(pair_wise_ious + 1e-8) * self.iou_weight
|
|
|
+
|
|
|
+ # ----------------------------------- classification cost -----------------------------------
|
|
|
+ ## select the predicted scores corresponded to the gt_labels
|
|
|
+ pairwise_pred_scores = pred_cls.permute(1, 0) # [M, C] -> [C, M]
|
|
|
+ pairwise_pred_scores = pairwise_pred_scores[gt_labels.long(), :].float() # [N, M]
|
|
|
+ ## scale factor
|
|
|
+ scale_factor = (pair_wise_ious - pairwise_pred_scores.sigmoid()).abs().pow(2.0)
|
|
|
+ ## cls cost
|
|
|
+ pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
|
|
|
+ pairwise_pred_scores, pair_wise_ious,
|
|
|
+ reduction="none") * scale_factor # [N, M]
|
|
|
+
|
|
|
+ del pairwise_pred_scores
|
|
|
+
|
|
|
+ ## foreground cost matrix
|
|
|
+ cost_matrix = pair_wise_cls_loss + pair_wise_ious_loss + soft_center_prior
|
|
|
+ max_pad_value = torch.ones_like(cost_matrix) * 1e9
|
|
|
+ cost_matrix = torch.where(valid_mask[None].repeat(num_gt, 1), # [N, M]
|
|
|
+ cost_matrix, max_pad_value)
|
|
|
+
|
|
|
+ # ----------------------------------- dynamic label assignment -----------------------------------
|
|
|
(
|
|
|
- assigned_labels, # [num_fg,]
|
|
|
- assigned_ious, # [num_fg,]
|
|
|
- assigned_indexs, # [num_fg,]
|
|
|
+ matched_pred_ious,
|
|
|
+ matched_gt_inds,
|
|
|
+ fg_mask_inboxes
|
|
|
) = self.dynamic_k_matching(
|
|
|
cost_matrix,
|
|
|
pair_wise_ious,
|
|
|
- tgt_labels,
|
|
|
- num_gt,
|
|
|
- fg_mask
|
|
|
+ num_gt
|
|
|
)
|
|
|
- del cls_cost, cost_matrix, pair_wise_ious, reg_cost
|
|
|
-
|
|
|
- return fg_mask, assigned_labels, assigned_ious, assigned_indexs
|
|
|
+ del pair_wise_cls_loss, cost_matrix, pair_wise_ious, pair_wise_ious_loss
|
|
|
|
|
|
+ # -----------------------------------process assigned labels -----------------------------------
|
|
|
+ assigned_labels = gt_labels.new_full(pred_cls[..., 0].shape,
|
|
|
+ self.num_classes) # [M,]
|
|
|
+ assigned_labels[fg_mask_inboxes] = gt_labels[matched_gt_inds].squeeze(-1)
|
|
|
+ assigned_labels = assigned_labels.long() # [M,]
|
|
|
|
|
|
- def get_in_boxes_info(
|
|
|
- self,
|
|
|
- gt_bboxes, # [N, 4]
|
|
|
- anchors, # [M, 2]
|
|
|
- strides, # [M,]
|
|
|
- num_anchors, # M
|
|
|
- num_gt, # N
|
|
|
- ):
|
|
|
- # anchor center
|
|
|
- x_centers = anchors[:, 0]
|
|
|
- y_centers = anchors[:, 1]
|
|
|
+ assigned_bboxes = gt_bboxes.new_full(pred_box.shape, 0) # [M, 4]
|
|
|
+ assigned_bboxes[fg_mask_inboxes] = gt_bboxes[matched_gt_inds] # [M, 4]
|
|
|
|
|
|
- # [M,] -> [1, M] -> [N, M]
|
|
|
- x_centers = x_centers.unsqueeze(0).repeat(num_gt, 1)
|
|
|
- y_centers = y_centers.unsqueeze(0).repeat(num_gt, 1)
|
|
|
+ assign_metrics = gt_bboxes.new_full(pred_cls[..., 0].shape, 0) # [M, 4]
|
|
|
+ assign_metrics[fg_mask_inboxes] = matched_pred_ious # [M, 4]
|
|
|
|
|
|
- # [N,] -> [N, 1] -> [N, M]
|
|
|
- gt_bboxes_l = gt_bboxes[:, 0].unsqueeze(1).repeat(1, num_anchors) # x1
|
|
|
- gt_bboxes_t = gt_bboxes[:, 1].unsqueeze(1).repeat(1, num_anchors) # y1
|
|
|
- gt_bboxes_r = gt_bboxes[:, 2].unsqueeze(1).repeat(1, num_anchors) # x2
|
|
|
- gt_bboxes_b = gt_bboxes[:, 3].unsqueeze(1).repeat(1, num_anchors) # y2
|
|
|
-
|
|
|
- b_l = x_centers - gt_bboxes_l
|
|
|
- b_r = gt_bboxes_r - x_centers
|
|
|
- b_t = y_centers - gt_bboxes_t
|
|
|
- b_b = gt_bboxes_b - y_centers
|
|
|
- bbox_deltas = torch.stack([b_l, b_t, b_r, b_b], 2)
|
|
|
+ assigned_dict = dict(
|
|
|
+ assigned_labels=assigned_labels,
|
|
|
+ assigned_bboxes=assigned_bboxes,
|
|
|
+ assign_metrics=assign_metrics
|
|
|
+ )
|
|
|
+
|
|
|
+ return assigned_dict
|
|
|
|
|
|
- is_in_boxes = bbox_deltas.min(dim=-1).values > 0.0
|
|
|
- is_in_boxes_all = is_in_boxes.sum(dim=0) > 0
|
|
|
- # in fixed center
|
|
|
- center_radius = self.center_sampling_radius
|
|
|
|
|
|
- # [N, 2]
|
|
|
- gt_centers = (gt_bboxes[:, :2] + gt_bboxes[:, 2:]) * 0.5
|
|
|
-
|
|
|
- # [1, M]
|
|
|
- center_radius_ = center_radius * strides.unsqueeze(0)
|
|
|
+ def find_inside_points(self, gt_bboxes, anchors):
|
|
|
+ """
|
|
|
+ gt_bboxes: Tensor -> [N, 2]
|
|
|
+ anchors: Tensor -> [M, 2]
|
|
|
+ """
|
|
|
+ num_anchors = anchors.shape[0]
|
|
|
+ num_gt = gt_bboxes.shape[0]
|
|
|
|
|
|
- gt_bboxes_l = gt_centers[:, 0].unsqueeze(1).repeat(1, num_anchors) - center_radius_ # x1
|
|
|
- gt_bboxes_t = gt_centers[:, 1].unsqueeze(1).repeat(1, num_anchors) - center_radius_ # y1
|
|
|
- gt_bboxes_r = gt_centers[:, 0].unsqueeze(1).repeat(1, num_anchors) + center_radius_ # x2
|
|
|
- gt_bboxes_b = gt_centers[:, 1].unsqueeze(1).repeat(1, num_anchors) + center_radius_ # y2
|
|
|
+ anchors_expand = anchors.unsqueeze(0).repeat(num_gt, 1, 1) # [N, M, 2]
|
|
|
+ gt_bboxes_expand = gt_bboxes.unsqueeze(1).repeat(1, num_anchors, 1) # [N, M, 4]
|
|
|
|
|
|
- c_l = x_centers - gt_bboxes_l
|
|
|
- c_r = gt_bboxes_r - x_centers
|
|
|
- c_t = y_centers - gt_bboxes_t
|
|
|
- c_b = gt_bboxes_b - y_centers
|
|
|
- center_deltas = torch.stack([c_l, c_t, c_r, c_b], 2)
|
|
|
- is_in_centers = center_deltas.min(dim=-1).values > 0.0
|
|
|
- is_in_centers_all = is_in_centers.sum(dim=0) > 0
|
|
|
+ # offset
|
|
|
+ lt = anchors_expand - gt_bboxes_expand[..., :2]
|
|
|
+ rb = gt_bboxes_expand[..., 2:] - anchors_expand
|
|
|
+ bbox_deltas = torch.cat([lt, rb], dim=-1)
|
|
|
|
|
|
- # in boxes and in centers
|
|
|
- is_in_boxes_anchor = is_in_boxes_all | is_in_centers_all
|
|
|
+ is_in_gts = bbox_deltas.min(dim=-1).values > 0
|
|
|
|
|
|
- is_in_boxes_and_center = (
|
|
|
- is_in_boxes[:, is_in_boxes_anchor] & is_in_centers[:, is_in_boxes_anchor]
|
|
|
- )
|
|
|
- return is_in_boxes_anchor, is_in_boxes_and_center
|
|
|
-
|
|
|
+ return is_in_gts
|
|
|
|
|
|
- def dynamic_k_matching(
|
|
|
- self,
|
|
|
- cost,
|
|
|
- pair_wise_ious,
|
|
|
- gt_classes,
|
|
|
- num_gt,
|
|
|
- fg_mask
|
|
|
- ):
|
|
|
- # Dynamic K
|
|
|
- # ---------------------------------------------------------------
|
|
|
- matching_matrix = torch.zeros_like(cost, dtype=torch.uint8)
|
|
|
|
|
|
- ious_in_boxes_matrix = pair_wise_ious
|
|
|
- n_candidate_k = min(self.topk_candidate, ious_in_boxes_matrix.size(1))
|
|
|
- topk_ious, _ = torch.topk(ious_in_boxes_matrix, n_candidate_k, dim=1)
|
|
|
+ def dynamic_k_matching(self, cost_matrix, pairwise_ious, num_gt):
|
|
|
+ """Use IoU and matching cost to calculate the dynamic top-k positive
|
|
|
+ targets.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ cost_matrix (Tensor): Cost matrix.
|
|
|
+ pairwise_ious (Tensor): Pairwise iou matrix.
|
|
|
+ num_gt (int): Number of gt.
|
|
|
+ valid_mask (Tensor): Mask for valid bboxes.
|
|
|
+ Returns:
|
|
|
+ tuple: matched ious and gt indexes.
|
|
|
+ """
|
|
|
+ matching_matrix = torch.zeros_like(cost_matrix, dtype=torch.uint8)
|
|
|
+ # select candidate topk ious for dynamic-k calculation
|
|
|
+ candidate_topk = min(self.topk_candidate, pairwise_ious.size(1))
|
|
|
+ topk_ious, _ = torch.topk(pairwise_ious, candidate_topk, dim=1)
|
|
|
+ # calculate dynamic k for each gt
|
|
|
dynamic_ks = torch.clamp(topk_ious.sum(1).int(), min=1)
|
|
|
- dynamic_ks = dynamic_ks.tolist()
|
|
|
- for gt_idx in range(num_gt):
|
|
|
- _, pos_idx = torch.topk(
|
|
|
- cost[gt_idx], k=dynamic_ks[gt_idx], largest=False
|
|
|
- )
|
|
|
- matching_matrix[gt_idx][pos_idx] = 1
|
|
|
|
|
|
- del topk_ious, dynamic_ks, pos_idx
|
|
|
+ # sorting the batch cost matirx is faster than topk
|
|
|
+ _, sorted_indices = torch.sort(cost_matrix, dim=1)
|
|
|
+ for gt_idx in range(num_gt):
|
|
|
+ topk_ids = sorted_indices[gt_idx, :dynamic_ks[gt_idx]]
|
|
|
+ matching_matrix[gt_idx, :][topk_ids] = 1
|
|
|
|
|
|
- anchor_matching_gt = matching_matrix.sum(0)
|
|
|
- if (anchor_matching_gt > 1).sum() > 0:
|
|
|
- _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
|
|
|
- matching_matrix[:, anchor_matching_gt > 1] *= 0
|
|
|
- matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1
|
|
|
- fg_mask_inboxes = matching_matrix.sum(0) > 0
|
|
|
+ del topk_ious, dynamic_ks, topk_ids
|
|
|
|
|
|
- fg_mask[fg_mask.clone()] = fg_mask_inboxes
|
|
|
+ prior_match_gt_mask = matching_matrix.sum(0) > 1
|
|
|
+ if prior_match_gt_mask.sum() > 0:
|
|
|
+ cost_min, cost_argmin = torch.min(
|
|
|
+ cost_matrix[:, prior_match_gt_mask], dim=0)
|
|
|
+ matching_matrix[:, prior_match_gt_mask] *= 0
|
|
|
+ matching_matrix[cost_argmin, prior_match_gt_mask] = 1
|
|
|
|
|
|
- assigned_indexs = matching_matrix[:, fg_mask_inboxes].argmax(0)
|
|
|
- assigned_labels = gt_classes[assigned_indexs]
|
|
|
+ # get foreground mask inside box and center prior
|
|
|
+ fg_mask_inboxes = matching_matrix.sum(0) > 0
|
|
|
+ matched_pred_ious = (matching_matrix *
|
|
|
+ pairwise_ious).sum(0)[fg_mask_inboxes]
|
|
|
+ matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
|
|
|
|
|
|
- assigned_ious = (matching_matrix * pair_wise_ious).sum(0)[
|
|
|
- fg_mask_inboxes
|
|
|
- ]
|
|
|
- return assigned_labels, assigned_ious, assigned_indexs
|
|
|
-
|
|
|
+ return matched_pred_ious, matched_gt_inds, fg_mask_inboxes
|