loss.py 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197
  1. import torch
  2. import torch.nn.functional as F
  3. from utils.box_ops import bbox2dist, get_ious
  4. from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
  5. from .matcher import AlignedSimOTA
  6. class Criterion(object):
  7. def __init__(self, args, cfg, device, num_classes=80):
  8. self.cfg = cfg
  9. self.args = args
  10. self.device = device
  11. self.num_classes = num_classes
  12. self.max_epoch = args.max_epoch
  13. self.no_aug_epoch = args.no_aug_epoch
  14. self.use_ema_update = cfg['ema_update']
  15. # ---------------- Loss weight ----------------
  16. self.loss_cls_weight = cfg['loss_cls_weight']
  17. self.loss_box_weight = cfg['loss_box_weight']
  18. self.loss_box_aux = cfg['loss_box_aux']
  19. # ---------------- Matcher ----------------
  20. matcher_config = cfg['matcher']
  21. ## Aligned SimOTA assigner
  22. self.ota_matcher = AlignedSimOTA(
  23. num_classes=num_classes,
  24. soft_center_radius=matcher_config['soft_center_radius'],
  25. topk_candidate=matcher_config['topk_candidate'],
  26. iou_weight=matcher_config['iou_weight']
  27. )
  28. def ema_update(self, name: str, value, initial_value, momentum=0.9):
  29. if hasattr(self, name):
  30. old = getattr(self, name)
  31. else:
  32. old = initial_value
  33. new = old * momentum + value * (1 - momentum)
  34. setattr(self, name, new)
  35. return new
  36. def loss_classes(self, pred_cls, target, beta=2.0):
  37. # Quality FocalLoss
  38. """
  39. pred_cls: (torch.Tensor): [N, C]。
  40. target: (tuple([torch.Tensor], [torch.Tensor])): label -> [N,], score -> [N,]
  41. """
  42. label, score = target
  43. pred_sigmoid = pred_cls.sigmoid()
  44. scale_factor = pred_sigmoid
  45. zerolabel = scale_factor.new_zeros(pred_cls.shape)
  46. ce_loss = F.binary_cross_entropy_with_logits(
  47. pred_cls, zerolabel, reduction='none') * scale_factor.pow(beta)
  48. bg_class_ind = pred_cls.shape[-1]
  49. pos = ((label >= 0) & (label < bg_class_ind)).nonzero().squeeze(1)
  50. pos_label = label[pos].long()
  51. scale_factor = score[pos] - pred_sigmoid[pos, pos_label]
  52. ce_loss[pos, pos_label] = F.binary_cross_entropy_with_logits(
  53. pred_cls[pos, pos_label], score[pos],
  54. reduction='none') * scale_factor.abs().pow(beta)
  55. return ce_loss
  56. def loss_bboxes(self, pred_box, gt_box):
  57. # regression loss
  58. ious = get_ious(pred_box, gt_box, 'xyxy', 'giou')
  59. loss_box = 1.0 - ious
  60. return loss_box
  61. def loss_bboxes_aux(self, pred_reg, gt_box, anchors, stride_tensors):
  62. # xyxy -> cxcy&bwbh
  63. gt_cxcy = (gt_box[..., :2] + gt_box[..., 2:]) * 0.5
  64. gt_bwbh = gt_box[..., 2:] - gt_box[..., :2]
  65. # encode gt box
  66. gt_cxcy_encode = (gt_cxcy - anchors) / stride_tensors
  67. gt_bwbh_encode = torch.log(gt_bwbh / stride_tensors)
  68. gt_box_encode = torch.cat([gt_cxcy_encode, gt_bwbh_encode], dim=-1)
  69. # l1 loss
  70. loss_box_aux = F.l1_loss(pred_reg, gt_box_encode, reduction='none')
  71. return loss_box_aux
  72. def __call__(self, outputs, targets, epoch=0):
  73. bs = outputs['pred_cls'][0].shape[0]
  74. device = outputs['pred_cls'][0].device
  75. fpn_strides = outputs['strides']
  76. anchors = outputs['anchors']
  77. num_anchors = sum([ab.shape[0] for ab in anchors])
  78. # preds: [B, M, C]
  79. cls_preds = torch.cat(outputs['pred_cls'], dim=1)
  80. reg_preds = torch.cat(outputs['pred_reg'], dim=1)
  81. box_preds = torch.cat(outputs['pred_box'], dim=1)
  82. # --------------- label assignment ---------------
  83. cls_targets = []
  84. box_targets = []
  85. assign_metrics = []
  86. for batch_idx in range(bs):
  87. tgt_labels = targets[batch_idx]["labels"].to(device) # [N,]
  88. tgt_bboxes = targets[batch_idx]["boxes"].to(device) # [N, 4]
  89. # label assignment
  90. assigned_result = self.ota_matcher(fpn_strides=fpn_strides,
  91. anchors=anchors,
  92. pred_cls=cls_preds[batch_idx].detach(),
  93. pred_box=box_preds[batch_idx].detach(),
  94. gt_labels=tgt_labels,
  95. gt_bboxes=tgt_bboxes
  96. )
  97. cls_targets.append(assigned_result['assigned_labels'])
  98. box_targets.append(assigned_result['assigned_bboxes'])
  99. assign_metrics.append(assigned_result['assign_metrics'])
  100. cls_targets = torch.cat(cls_targets, dim=0)
  101. box_targets = torch.cat(box_targets, dim=0)
  102. assign_metrics = torch.cat(assign_metrics, dim=0)
  103. # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
  104. bg_class_ind = self.num_classes
  105. pos_inds = ((cls_targets >= 0) & (cls_targets < bg_class_ind)).nonzero().squeeze(1)
  106. num_fgs = assign_metrics.sum()
  107. # average loss normalizer across all the GPUs
  108. if is_dist_avail_and_initialized():
  109. torch.distributed.all_reduce(num_fgs)
  110. num_fgs = (num_fgs / get_world_size()).clamp(1.0)
  111. # update loss normalizer with EMA
  112. if self.use_ema_update:
  113. normalizer = self.ema_update("loss_normalizer", max(num_fgs, 1), 100)
  114. else:
  115. normalizer = num_fgs
  116. # ------------------ Classification loss ------------------
  117. cls_preds = cls_preds.view(-1, self.num_classes)
  118. loss_cls = self.loss_classes(cls_preds, (cls_targets, assign_metrics))
  119. loss_cls = loss_cls.sum() / normalizer
  120. # ------------------ Regression loss ------------------
  121. box_preds_pos = box_preds.view(-1, 4)[pos_inds]
  122. box_targets_pos = box_targets[pos_inds]
  123. loss_box = self.loss_bboxes(box_preds_pos, box_targets_pos)
  124. loss_box = loss_box.sum() / normalizer
  125. losses = self.loss_cls_weight * loss_cls + \
  126. self.loss_box_weight * loss_box
  127. loss_dict = dict(
  128. loss_cls = loss_cls,
  129. loss_box = loss_box,
  130. losses = losses
  131. )
  132. # ------------------ Aux regression loss ------------------
  133. if epoch >= (self.max_epoch - self.no_aug_epoch - 1):
  134. ## reg_preds
  135. reg_preds = torch.cat(outputs['pred_reg'], dim=1)
  136. reg_preds_pos = reg_preds.view(-1, 4)[pos_inds]
  137. ## anchor tensors
  138. anchors_tensors = torch.cat(outputs['anchors'], dim=0)[None].repeat(bs, 1, 1)
  139. anchors_tensors_pos = anchors_tensors.view(-1, 2)[pos_inds]
  140. ## stride tensors
  141. stride_tensors = torch.cat(outputs['stride_tensors'], dim=0)[None].repeat(bs, 1, 1)
  142. stride_tensors_pos = stride_tensors.view(-1, 1)[pos_inds]
  143. ## aux loss
  144. loss_box_aux = self.loss_bboxes_aux(reg_preds_pos, box_targets_pos, anchors_tensors_pos, stride_tensors_pos)
  145. loss_box_aux = loss_box_aux.sum() / normalizer
  146. losses += loss_box_aux
  147. loss_dict['loss_box_aux'] = loss_box_aux
  148. return loss_dict
  149. def build_criterion(args, cfg, device, num_classes):
  150. criterion = Criterion(
  151. args=args,
  152. cfg=cfg,
  153. device=device,
  154. num_classes=num_classes
  155. )
  156. return criterion
  157. if __name__ == "__main__":
  158. pass