rtcdet_v2_pred.py 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. # Single-level pred layer
  5. class SingleLevelPredLayer(nn.Module):
  6. def __init__(self, cls_dim, reg_dim, num_classes, num_coords=4):
  7. super().__init__()
  8. # --------- Basic Parameters ----------
  9. self.cls_dim = cls_dim
  10. self.reg_dim = reg_dim
  11. self.num_classes = num_classes
  12. self.num_coords = num_coords
  13. # --------- Network Parameters ----------
  14. self.cls_pred = nn.Conv2d(cls_dim, num_classes, kernel_size=1)
  15. self.reg_pred = nn.Conv2d(reg_dim, num_coords, kernel_size=1)
  16. self.init_bias()
  17. def init_bias(self):
  18. # Init bias
  19. init_prob = 0.01
  20. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  21. # cls pred
  22. b = self.cls_pred.bias.view(1, -1)
  23. b.data.fill_(bias_value.item())
  24. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  25. # reg pred
  26. b = self.reg_pred.bias.view(-1, )
  27. b.data.fill_(1.0)
  28. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  29. w = self.reg_pred.weight
  30. w.data.fill_(0.)
  31. self.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
  32. def forward(self, cls_feat, reg_feat):
  33. """
  34. in_feats: (Tensor) [B, C, H, W]
  35. """
  36. cls_pred = self.cls_pred(cls_feat)
  37. reg_pred = self.reg_pred(reg_feat)
  38. return cls_pred, reg_pred
  39. # Multi-level pred layer
  40. class MultiLevelPredLayer(nn.Module):
  41. def __init__(self, cls_dim, reg_dim, strides, num_classes, num_coords=4, num_levels=3):
  42. super().__init__()
  43. # --------- Basic Parameters ----------
  44. self.cls_dim = cls_dim
  45. self.reg_dim = reg_dim
  46. self.strides = strides
  47. self.num_classes = num_classes
  48. self.num_coords = num_coords
  49. self.num_levels = num_levels
  50. # ----------- Network Parameters -----------
  51. ## pred layers
  52. self.multi_level_preds = nn.ModuleList(
  53. [SingleLevelPredLayer(
  54. cls_dim,
  55. reg_dim,
  56. num_classes,
  57. num_coords)
  58. for _ in range(num_levels)
  59. ])
  60. def generate_anchors(self, level, fmp_size):
  61. """
  62. fmp_size: (List) [H, W]
  63. """
  64. # generate grid cells
  65. fmp_h, fmp_w = fmp_size
  66. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  67. # [H, W, 2] -> [HW, 2]
  68. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  69. anchors += 0.5 # add center offset
  70. anchors *= self.strides[level]
  71. return anchors
  72. def forward(self, cls_feats, reg_feats):
  73. all_anchors = []
  74. all_strides = []
  75. all_cls_preds = []
  76. all_reg_preds = []
  77. all_box_preds = []
  78. for level in range(self.num_levels):
  79. # pred
  80. cls_pred, reg_pred = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
  81. # generate anchor boxes: [M, 4]
  82. B, _, H, W = cls_pred.size()
  83. fmp_size = [H, W]
  84. anchors = self.generate_anchors(level, fmp_size)
  85. anchors = anchors.to(cls_pred.device)
  86. # stride tensor: [M, 1]
  87. stride_tensor = torch.ones_like(anchors[..., :1]) * self.strides[level]
  88. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  89. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  90. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  91. # ----------------------- Decode bbox -----------------------
  92. ctr_pred = reg_pred[..., :2] * self.strides[level] + anchors[..., :2]
  93. wh_pred = torch.exp(reg_pred[..., 2:]) * self.strides[level]
  94. pred_x1y1 = ctr_pred - wh_pred * 0.5
  95. pred_x2y2 = ctr_pred + wh_pred * 0.5
  96. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  97. all_cls_preds.append(cls_pred)
  98. all_reg_preds.append(reg_pred)
  99. all_box_preds.append(box_pred)
  100. all_anchors.append(anchors)
  101. all_strides.append(stride_tensor)
  102. # output dict
  103. outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  104. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
  105. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  106. "anchors": all_anchors, # List(Tensor) [M, 2]
  107. "strides": self.strides, # List(Int) = [8, 16, 32]
  108. "stride_tensors": all_strides # List(Tensor) [M, 1]
  109. }
  110. return outputs
  111. # build detection head
  112. def build_pred_layer(cls_dim, reg_dim, strides, num_classes, num_coords=4, num_levels=3):
  113. pred_layers = MultiLevelPredLayer(cls_dim, reg_dim, strides, num_classes, num_coords, num_levels)
  114. return pred_layers