|
|
@@ -0,0 +1,363 @@
|
|
|
+import math
|
|
|
+import torch
|
|
|
+import torch.nn as nn
|
|
|
+import torch.nn.functional as F
|
|
|
+from torch.nn.init import constant_, xavier_uniform_, uniform_, normal_
|
|
|
+from typing import List
|
|
|
+
|
|
|
+try:
|
|
|
+ from .basic_modules.basic import BasicConv, MLP
|
|
|
+ from .basic_modules.transformer import PlainTransformerDecoder
|
|
|
+except:
|
|
|
+ from basic_modules.basic import BasicConv, MLP
|
|
|
+ from basic_modules.transformer import PlainTransformerDecoder
|
|
|
+
|
|
|
+
|
|
|
+def build_transformer(cfg, in_dims, num_classes, return_intermediate=False):
|
|
|
+ if cfg['transformer'] == 'plain_detr_transformer':
|
|
|
+ return PlainDETRTransformer(in_dims = in_dims,
|
|
|
+ hidden_dim = cfg['hidden_dim'],
|
|
|
+ strides = cfg['out_stride'],
|
|
|
+ num_classes = num_classes,
|
|
|
+ num_queries = cfg['num_queries'],
|
|
|
+ pos_embed_type = 'sine',
|
|
|
+ num_heads = cfg['de_num_heads'],
|
|
|
+ num_layers = cfg['de_num_layers'],
|
|
|
+ num_levels = len(cfg['out_stride']),
|
|
|
+ num_points = cfg['de_num_points'],
|
|
|
+ mlp_ratio = cfg['de_mlp_ratio'],
|
|
|
+ dropout = cfg['de_dropout'],
|
|
|
+ act_type = cfg['de_act'],
|
|
|
+ return_intermediate = return_intermediate,
|
|
|
+ num_denoising = cfg['dn_num_denoising'],
|
|
|
+ label_noise_ratio = cfg['dn_label_noise_ratio'],
|
|
|
+ box_noise_scale = cfg['dn_box_noise_scale'],
|
|
|
+ learnt_init_query = cfg['learnt_init_query'],
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+# ----------------- Dencoder for Detection task -----------------
|
|
|
+## RTDETR's Transformer for Detection task
|
|
|
+class PlainDETRTransformer(nn.Module):
|
|
|
+ def __init__(self,
|
|
|
+ # basic parameters
|
|
|
+ in_dims :List = [256, 512, 1024],
|
|
|
+ hidden_dim :int = 256,
|
|
|
+ strides :List = [8, 16, 32],
|
|
|
+ num_classes :int = 80,
|
|
|
+ num_queries :int = 300,
|
|
|
+ pos_embed_type :str = 'sine',
|
|
|
+ # transformer parameters
|
|
|
+ num_heads :int = 8,
|
|
|
+ num_layers :int = 1,
|
|
|
+ num_levels :int = 3,
|
|
|
+ num_points :int = 4,
|
|
|
+ mlp_ratio :float = 4.0,
|
|
|
+ dropout :float = 0.1,
|
|
|
+ act_type :str = "relu",
|
|
|
+ return_intermediate :bool = False,
|
|
|
+ # Denoising parameters
|
|
|
+ num_denoising :int = 100,
|
|
|
+ label_noise_ratio :float = 0.5,
|
|
|
+ box_noise_scale :float = 1.0,
|
|
|
+ learnt_init_query :bool = True,
|
|
|
+ ):
|
|
|
+ super().__init__()
|
|
|
+ # --------------- Basic setting ---------------
|
|
|
+ ## Basic parameters
|
|
|
+ self.in_dims = in_dims
|
|
|
+ self.strides = strides
|
|
|
+ self.num_queries = num_queries
|
|
|
+ self.pos_embed_type = pos_embed_type
|
|
|
+ self.num_classes = num_classes
|
|
|
+ self.eps = 1e-2
|
|
|
+ ## Transformer parameters
|
|
|
+ self.num_heads = num_heads
|
|
|
+ self.num_layers = num_layers
|
|
|
+ self.num_levels = num_levels
|
|
|
+ self.num_points = num_points
|
|
|
+ self.mlp_ratio = mlp_ratio
|
|
|
+ self.dropout = dropout
|
|
|
+ self.act_type = act_type
|
|
|
+ self.return_intermediate = return_intermediate
|
|
|
+ ## Denoising parameters
|
|
|
+ self.num_denoising = num_denoising
|
|
|
+ self.label_noise_ratio = label_noise_ratio
|
|
|
+ self.box_noise_scale = box_noise_scale
|
|
|
+ self.learnt_init_query = learnt_init_query
|
|
|
+
|
|
|
+ # --------------- Network setting ---------------
|
|
|
+ ## Input proj layers
|
|
|
+ self.input_proj_layers = nn.ModuleList(
|
|
|
+ BasicConv(in_dims[i], hidden_dim, kernel_size=1, act_type=None, norm_type="BN")
|
|
|
+ for i in range(num_levels)
|
|
|
+ )
|
|
|
+
|
|
|
+ ## Deformable transformer decoder
|
|
|
+ self.decoder = PlainTransformerDecoder(
|
|
|
+ d_model = hidden_dim,
|
|
|
+ num_heads = num_heads,
|
|
|
+ num_layers = num_layers,
|
|
|
+ num_levels = num_levels,
|
|
|
+ num_points = num_points,
|
|
|
+ mlp_ratio = mlp_ratio,
|
|
|
+ dropout = dropout,
|
|
|
+ act_type = act_type,
|
|
|
+ return_intermediate = return_intermediate
|
|
|
+ )
|
|
|
+
|
|
|
+ ## Detection head for Encoder
|
|
|
+ self.enc_output = nn.Sequential(
|
|
|
+ nn.Linear(hidden_dim, hidden_dim),
|
|
|
+ nn.LayerNorm(hidden_dim)
|
|
|
+ )
|
|
|
+ self.enc_class_head = nn.Linear(hidden_dim, num_classes)
|
|
|
+ self.enc_bbox_head = MLP(hidden_dim, hidden_dim, 4, num_layers=3)
|
|
|
+
|
|
|
+ ## Detection head for Decoder
|
|
|
+ self.dec_class_head = nn.ModuleList([
|
|
|
+ nn.Linear(hidden_dim, num_classes)
|
|
|
+ for _ in range(num_layers)
|
|
|
+ ])
|
|
|
+ self.dec_bbox_head = nn.ModuleList([
|
|
|
+ MLP(hidden_dim, hidden_dim, 4, num_layers=3)
|
|
|
+ for _ in range(num_layers)
|
|
|
+ ])
|
|
|
+
|
|
|
+ ## Object query
|
|
|
+ if learnt_init_query:
|
|
|
+ self.tgt_embed = nn.Embedding(num_queries, hidden_dim)
|
|
|
+ self.query_pos_head = MLP(4, 2 * hidden_dim, hidden_dim, num_layers=2)
|
|
|
+
|
|
|
+ ## Denoising part
|
|
|
+ self.denoising_class_embed = nn.Embedding(num_classes, hidden_dim)
|
|
|
+
|
|
|
+ self._reset_parameters()
|
|
|
+
|
|
|
+ def _reset_parameters(self):
|
|
|
+ def linear_init_(module):
|
|
|
+ bound = 1 / math.sqrt(module.weight.shape[0])
|
|
|
+ uniform_(module.weight, -bound, bound)
|
|
|
+ if hasattr(module, "bias") and module.bias is not None:
|
|
|
+ uniform_(module.bias, -bound, bound)
|
|
|
+
|
|
|
+ # class and bbox head init
|
|
|
+ prior_prob = 0.01
|
|
|
+ cls_bias_init = float(-math.log((1 - prior_prob) / prior_prob))
|
|
|
+ linear_init_(self.enc_class_head)
|
|
|
+ constant_(self.enc_class_head.bias, cls_bias_init)
|
|
|
+ constant_(self.enc_bbox_head.layers[-1].weight, 0.)
|
|
|
+ constant_(self.enc_bbox_head.layers[-1].bias, 0.)
|
|
|
+ for cls_, reg_ in zip(self.dec_class_head, self.dec_bbox_head):
|
|
|
+ linear_init_(cls_)
|
|
|
+ constant_(cls_.bias, cls_bias_init)
|
|
|
+ constant_(reg_.layers[-1].weight, 0.)
|
|
|
+ constant_(reg_.layers[-1].bias, 0.)
|
|
|
+
|
|
|
+ linear_init_(self.enc_output[0])
|
|
|
+ xavier_uniform_(self.enc_output[0].weight)
|
|
|
+ if self.learnt_init_query:
|
|
|
+ xavier_uniform_(self.tgt_embed.weight)
|
|
|
+ xavier_uniform_(self.query_pos_head.layers[0].weight)
|
|
|
+ xavier_uniform_(self.query_pos_head.layers[1].weight)
|
|
|
+ for l in self.input_proj_layers:
|
|
|
+ xavier_uniform_(l.conv.weight)
|
|
|
+ normal_(self.denoising_class_embed.weight)
|
|
|
+
|
|
|
+ def generate_anchors(self, spatial_shapes, grid_size=0.05):
|
|
|
+ anchors = []
|
|
|
+ for lvl, (h, w) in enumerate(spatial_shapes):
|
|
|
+ grid_y, grid_x = torch.meshgrid(torch.arange(h), torch.arange(w))
|
|
|
+ # [H, W, 2]
|
|
|
+ grid_xy = torch.stack([grid_x, grid_y], dim=-1).float()
|
|
|
+
|
|
|
+ valid_WH = torch.as_tensor([w, h]).float()
|
|
|
+ grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_WH
|
|
|
+ wh = torch.ones_like(grid_xy) * grid_size * (2.0**lvl)
|
|
|
+ # [H, W, 4] -> [1, N, 4], N=HxW
|
|
|
+ anchors.append(torch.cat([grid_xy, wh], dim=-1).reshape(-1, h * w, 4))
|
|
|
+ # List[L, 1, N_i, 4] -> [1, N, 4], N=N_0 + N_1 + N_2 + ...
|
|
|
+ anchors = torch.cat(anchors, dim=1)
|
|
|
+ valid_mask = ((anchors > self.eps) * (anchors < 1 - self.eps)).all(-1, keepdim=True)
|
|
|
+ anchors = torch.log(anchors / (1 - anchors))
|
|
|
+ # Equal to operation: anchors = torch.masked_fill(anchors, ~valid_mask, torch.as_tensor(float("inf")))
|
|
|
+ anchors = torch.where(valid_mask, anchors, torch.as_tensor(float("inf")))
|
|
|
+
|
|
|
+ return anchors, valid_mask
|
|
|
+
|
|
|
+ def get_encoder_input(self, feats):
|
|
|
+ # get projection features
|
|
|
+ proj_feats = [self.input_proj_layers[i](feat) for i, feat in enumerate(feats)]
|
|
|
+
|
|
|
+ # get encoder inputs
|
|
|
+ feat_flatten = []
|
|
|
+ spatial_shapes = []
|
|
|
+ level_start_index = [0, ]
|
|
|
+ for i, feat in enumerate(proj_feats):
|
|
|
+ _, _, h, w = feat.shape
|
|
|
+ spatial_shapes.append([h, w])
|
|
|
+ # [l], start index of each level
|
|
|
+ level_start_index.append(h * w + level_start_index[-1])
|
|
|
+ # [B, C, H, W] -> [B, N, C], N=HxW
|
|
|
+ feat_flatten.append(feat.flatten(2).permute(0, 2, 1))
|
|
|
+
|
|
|
+ # [B, N, C], N = N_0 + N_1 + ...
|
|
|
+ feat_flatten = torch.cat(feat_flatten, dim=1)
|
|
|
+ level_start_index.pop()
|
|
|
+
|
|
|
+ return (feat_flatten, spatial_shapes, level_start_index)
|
|
|
+
|
|
|
+ def get_decoder_input(self,
|
|
|
+ memory,
|
|
|
+ spatial_shapes,
|
|
|
+ denoising_class=None,
|
|
|
+ denoising_bbox_unact=None):
|
|
|
+ bs, _, _ = memory.shape
|
|
|
+ # Prepare input for decoder
|
|
|
+ anchors, valid_mask = self.generate_anchors(spatial_shapes)
|
|
|
+ anchors = anchors.to(memory.device)
|
|
|
+ valid_mask = valid_mask.to(memory.device)
|
|
|
+
|
|
|
+ # Process encoder's output
|
|
|
+ memory = torch.where(valid_mask, memory, torch.as_tensor(0., device=memory.device))
|
|
|
+ output_memory = self.enc_output(memory)
|
|
|
+
|
|
|
+ # Head for encoder's output : [bs, num_quries, c]
|
|
|
+ enc_outputs_class = self.enc_class_head(output_memory)
|
|
|
+ enc_outputs_coord_unact = self.enc_bbox_head(output_memory) + anchors
|
|
|
+
|
|
|
+ # Topk proposals from encoder's output
|
|
|
+ topk = self.num_queries
|
|
|
+ topk_ind = torch.topk(enc_outputs_class.max(-1)[0], topk, dim=1)[1] # [bs, num_queries]
|
|
|
+ enc_topk_logits = torch.gather(
|
|
|
+ enc_outputs_class, 1, topk_ind.unsqueeze(-1).repeat(1, 1, self.num_classes)) # [bs, num_queries, nc]
|
|
|
+ reference_points_unact = torch.gather(
|
|
|
+ enc_outputs_coord_unact, 1, topk_ind.unsqueeze(-1).repeat(1, 1, 4)) # [bs, num_queries, 4]
|
|
|
+ enc_topk_bboxes = F.sigmoid(reference_points_unact)
|
|
|
+
|
|
|
+ if denoising_bbox_unact is not None:
|
|
|
+ reference_points_unact = torch.cat(
|
|
|
+ [denoising_bbox_unact, reference_points_unact], 1)
|
|
|
+ if self.training:
|
|
|
+ reference_points_unact = reference_points_unact.detach()
|
|
|
+
|
|
|
+ # Extract region features
|
|
|
+ if self.learnt_init_query:
|
|
|
+ # [num_queries, c] -> [b, num_queries, c]
|
|
|
+ target = self.tgt_embed.weight.unsqueeze(0).repeat(bs, 1, 1)
|
|
|
+ else:
|
|
|
+ # [num_queries, c] -> [b, num_queries, c]
|
|
|
+ target = torch.gather(output_memory, 1, topk_ind.unsqueeze(-1).repeat(1, 1, output_memory.shape[-1]))
|
|
|
+ if self.training:
|
|
|
+ target = target.detach()
|
|
|
+ if denoising_class is not None:
|
|
|
+ target = torch.cat([denoising_class, target], dim=1)
|
|
|
+
|
|
|
+ return target, reference_points_unact, enc_topk_bboxes, enc_topk_logits
|
|
|
+
|
|
|
+ def forward(self, feats, targets=None):
|
|
|
+ # input projection and embedding
|
|
|
+ memory, spatial_shapes, _ = self.get_encoder_input(feats)
|
|
|
+
|
|
|
+ # prepare denoising training
|
|
|
+ if self.training:
|
|
|
+ denoising_class, denoising_bbox_unact, attn_mask, dn_meta = \
|
|
|
+ get_contrastive_denoising_training_group(targets,
|
|
|
+ self.num_classes,
|
|
|
+ self.num_queries,
|
|
|
+ self.denoising_class_embed.weight,
|
|
|
+ self.num_denoising,
|
|
|
+ self.label_noise_ratio,
|
|
|
+ self.box_noise_scale)
|
|
|
+ else:
|
|
|
+ denoising_class, denoising_bbox_unact, attn_mask, dn_meta = None, None, None, None
|
|
|
+
|
|
|
+ target, init_ref_points_unact, enc_topk_bboxes, enc_topk_logits = \
|
|
|
+ self.get_decoder_input(
|
|
|
+ memory, spatial_shapes, denoising_class, denoising_bbox_unact)
|
|
|
+
|
|
|
+ # decoder
|
|
|
+ out_bboxes, out_logits = self.decoder(target,
|
|
|
+ init_ref_points_unact,
|
|
|
+ memory,
|
|
|
+ spatial_shapes,
|
|
|
+ self.dec_bbox_head,
|
|
|
+ self.dec_class_head,
|
|
|
+ self.query_pos_head,
|
|
|
+ attn_mask)
|
|
|
+
|
|
|
+ return out_bboxes, out_logits, enc_topk_bboxes, enc_topk_logits, dn_meta
|
|
|
+
|
|
|
+
|
|
|
+# ----------------- Dencoder for Segmentation task -----------------
|
|
|
+## RTDETR's Transformer for Segmentation task
|
|
|
+class SegTransformerDecoder(nn.Module):
|
|
|
+ def __init__(self, ):
|
|
|
+ super().__init__()
|
|
|
+ # TODO: design seg-decoder
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ return
|
|
|
+
|
|
|
+
|
|
|
+# ----------------- Dencoder for Pose estimation task -----------------
|
|
|
+## RTDETR's Transformer for Pose estimation task
|
|
|
+class PosTransformerDecoder(nn.Module):
|
|
|
+ def __init__(self, ):
|
|
|
+ super().__init__()
|
|
|
+ # TODO: design seg-decoder
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ return
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == '__main__':
|
|
|
+ import time
|
|
|
+ from thop import profile
|
|
|
+ cfg = {
|
|
|
+ 'out_stride': [8, 16, 32],
|
|
|
+ # Transformer Decoder
|
|
|
+ 'transformer': 'rtdetr_transformer',
|
|
|
+ 'hidden_dim': 256,
|
|
|
+ 'de_num_heads': 8,
|
|
|
+ 'de_num_layers': 6,
|
|
|
+ 'de_mlp_ratio': 4.0,
|
|
|
+ 'de_dropout': 0.1,
|
|
|
+ 'de_act': 'gelu',
|
|
|
+ 'de_num_points': 4,
|
|
|
+ 'num_queries': 300,
|
|
|
+ 'learnt_init_query': False,
|
|
|
+ 'pe_temperature': 10000.,
|
|
|
+ 'dn_num_denoising': 100,
|
|
|
+ 'dn_label_noise_ratio': 0.5,
|
|
|
+ 'dn_box_noise_scale': 1,
|
|
|
+ }
|
|
|
+ bs = 1
|
|
|
+ hidden_dim = cfg['hidden_dim']
|
|
|
+ in_dims = [hidden_dim] * 3
|
|
|
+ targets = [{
|
|
|
+ 'labels': torch.tensor([2, 4, 5, 8]).long(),
|
|
|
+ 'boxes': torch.tensor([[0, 0, 10, 10], [12, 23, 56, 70], [0, 10, 20, 30], [50, 60, 55, 150]]).float()
|
|
|
+ }] * bs
|
|
|
+ pyramid_feats = [torch.randn(bs, hidden_dim, 80, 80),
|
|
|
+ torch.randn(bs, hidden_dim, 40, 40),
|
|
|
+ torch.randn(bs, hidden_dim, 20, 20)]
|
|
|
+ model = build_transformer(cfg, in_dims, 80, True)
|
|
|
+ model.train()
|
|
|
+
|
|
|
+ t0 = time.time()
|
|
|
+ outputs = model(pyramid_feats, targets)
|
|
|
+ out_bboxes, out_logits, enc_topk_bboxes, enc_topk_logits, dn_meta = outputs
|
|
|
+ t1 = time.time()
|
|
|
+ print('Time: ', t1 - t0)
|
|
|
+ print(out_bboxes.shape)
|
|
|
+ print(out_logits.shape)
|
|
|
+ print(enc_topk_bboxes.shape)
|
|
|
+ print(enc_topk_logits.shape)
|
|
|
+
|
|
|
+ print('==============================')
|
|
|
+ model.eval()
|
|
|
+ flops, params = profile(model, inputs=(pyramid_feats, ), verbose=False)
|
|
|
+ print('==============================')
|
|
|
+ print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
|
|
|
+ print('Params : {:.2f} M'.format(params / 1e6))
|