| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197 |
- import math
- import torch
- import torch.nn as nn
- # ----------------- Customed NormLayer Ops -----------------
- class FrozenBatchNorm2d(torch.nn.Module):
- def __init__(self, n):
- super(FrozenBatchNorm2d, self).__init__()
- self.register_buffer("weight", torch.ones(n))
- self.register_buffer("bias", torch.zeros(n))
- self.register_buffer("running_mean", torch.zeros(n))
- self.register_buffer("running_var", torch.ones(n))
- def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
- missing_keys, unexpected_keys, error_msgs):
- num_batches_tracked_key = prefix + 'num_batches_tracked'
- if num_batches_tracked_key in state_dict:
- del state_dict[num_batches_tracked_key]
- super(FrozenBatchNorm2d, self)._load_from_state_dict(
- state_dict, prefix, local_metadata, strict,
- missing_keys, unexpected_keys, error_msgs)
- def forward(self, x):
- # move reshapes to the beginning
- # to make it fuser-friendly
- w = self.weight.reshape(1, -1, 1, 1)
- b = self.bias.reshape(1, -1, 1, 1)
- rv = self.running_var.reshape(1, -1, 1, 1)
- rm = self.running_mean.reshape(1, -1, 1, 1)
- eps = 1e-5
- scale = w * (rv + eps).rsqrt()
- bias = b - rm * scale
- return x * scale + bias
- class LayerNorm2D(nn.Module):
- def __init__(self, normalized_shape, norm_layer=nn.LayerNorm):
- super().__init__()
- self.ln = norm_layer(normalized_shape) if norm_layer is not None else nn.Identity()
- def forward(self, x):
- """
- x: N C H W
- """
- x = x.permute(0, 2, 3, 1)
- x = self.ln(x)
- x = x.permute(0, 3, 1, 2)
- return x
- # ----------------- Basic CNN Ops -----------------
- def get_conv2d(c1, c2, k, p, s, g, bias=False):
- conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, groups=g, bias=bias)
- return conv
- def get_activation(act_type=None):
- if act_type == 'relu':
- return nn.ReLU(inplace=True)
- elif act_type == 'lrelu':
- return nn.LeakyReLU(0.1, inplace=True)
- elif act_type == 'mish':
- return nn.Mish(inplace=True)
- elif act_type == 'silu':
- return nn.SiLU(inplace=True)
- elif act_type == 'gelu':
- return nn.GELU()
- elif act_type is None:
- return nn.Identity()
- else:
- raise NotImplementedError
-
- def get_norm(norm_type, dim):
- if norm_type == 'BN':
- return nn.BatchNorm2d(dim)
- elif norm_type == 'GN':
- return nn.GroupNorm(num_groups=32, num_channels=dim)
- elif norm_type is None:
- return nn.Identity()
- else:
- raise NotImplementedError
- class BasicConv(nn.Module):
- def __init__(self,
- in_dim, # in channels
- out_dim, # out channels
- kernel_size=1, # kernel size
- padding=0, # padding
- stride=1, # padding
- act_type :str = 'lrelu', # activation
- norm_type :str = 'BN', # normalization
- ):
- super(BasicConv, self).__init__()
- add_bias = False if norm_type else True
- self.conv = get_conv2d(in_dim, out_dim, k=kernel_size, p=padding, s=stride, g=1, bias=add_bias)
- self.norm = get_norm(norm_type, out_dim)
- self.act = get_activation(act_type)
- def forward(self, x):
- return self.act(self.norm(self.conv(x)))
- class UpSampleWrapper(nn.Module):
- """Upsample last feat map to specific stride."""
- def __init__(self, in_dim, upsample_factor):
- super(UpSampleWrapper, self).__init__()
- # ---------- Basic parameters ----------
- self.upsample_factor = upsample_factor
- # ---------- Network parameters ----------
- if upsample_factor == 1:
- self.upsample = nn.Identity()
- else:
- scale = int(math.log2(upsample_factor))
- dim = in_dim
- layers = []
- for _ in range(scale-1):
- layers += [
- nn.ConvTranspose2d(dim, dim // 2, kernel_size=2, stride=2),
- LayerNorm2D(dim // 2),
- nn.GELU()
- ]
- dim = dim // 2
- layers += [nn.ConvTranspose2d(dim, dim // 2, kernel_size=2, stride=2)]
- dim = dim // 2
- self.upsample = nn.Sequential(*layers)
- self.out_dim = dim
- def forward(self, x):
- x = self.upsample(x)
- return x
- # ----------------- MLP modules -----------------
- class MLP(nn.Module):
- def __init__(self, in_dim, hidden_dim, out_dim, num_layers):
- super().__init__()
- self.num_layers = num_layers
- h = [hidden_dim] * (num_layers - 1)
- self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([in_dim] + h, h + [out_dim]))
- def forward(self, x):
- for i, layer in enumerate(self.layers):
- x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
- return x
- class FFN(nn.Module):
- def __init__(self, d_model=256, mlp_ratio=4.0, dropout=0., act_type='relu'):
- super().__init__()
- self.fpn_dim = round(d_model * mlp_ratio)
- self.linear1 = nn.Linear(d_model, self.fpn_dim)
- self.activation = get_activation(act_type)
- self.dropout2 = nn.Dropout(dropout)
- self.linear2 = nn.Linear(self.fpn_dim, d_model)
- self.dropout3 = nn.Dropout(dropout)
- self.norm = nn.LayerNorm(d_model)
- def forward(self, src):
- src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
- src = src + self.dropout3(src2)
- src = self.norm(src)
-
- return src
-
- # ----------------- Basic CNN Ops -----------------
- class FrozenBatchNorm2d(torch.nn.Module):
- def __init__(self, n):
- super(FrozenBatchNorm2d, self).__init__()
- self.register_buffer("weight", torch.ones(n))
- self.register_buffer("bias", torch.zeros(n))
- self.register_buffer("running_mean", torch.zeros(n))
- self.register_buffer("running_var", torch.ones(n))
- def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
- missing_keys, unexpected_keys, error_msgs):
- num_batches_tracked_key = prefix + 'num_batches_tracked'
- if num_batches_tracked_key in state_dict:
- del state_dict[num_batches_tracked_key]
- super(FrozenBatchNorm2d, self)._load_from_state_dict(
- state_dict, prefix, local_metadata, strict,
- missing_keys, unexpected_keys, error_msgs)
- def forward(self, x):
- # move reshapes to the beginning
- # to make it fuser-friendly
- w = self.weight.reshape(1, -1, 1, 1)
- b = self.bias.reshape(1, -1, 1, 1)
- rv = self.running_var.reshape(1, -1, 1, 1)
- rm = self.running_mean.reshape(1, -1, 1, 1)
- eps = 1e-5
- scale = w * (rv + eps).rsqrt()
- bias = b - rm * scale
- return x * scale + bias
|