| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288 |
- import math
- import copy
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from torch.nn.init import constant_, xavier_uniform_
- try:
- from .basic import get_activation, MLP, FFN
- except:
- from basic import get_activation, MLP, FFN
- def get_clones(module, N):
- if N <= 0:
- return None
- else:
- return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
- def inverse_sigmoid(x, eps=1e-5):
- x = x.clamp(min=0., max=1.)
- return torch.log(x.clamp(min=eps) / (1 - x).clamp(min=eps))
- # ----------------- Transformer modules -----------------
- ## Transformer Encoder layer
- class TransformerEncoderLayer(nn.Module):
- def __init__(self,
- d_model :int = 256,
- num_heads :int = 8,
- mlp_ratio :float = 4.0,
- dropout :float = 0.1,
- act_type :str = "relu",
- ):
- super().__init__()
- # ----------- Basic parameters -----------
- self.d_model = d_model
- self.num_heads = num_heads
- self.mlp_ratio = mlp_ratio
- self.dropout = dropout
- self.act_type = act_type
- # ----------- Basic parameters -----------
- # Multi-head Self-Attn
- self.self_attn = nn.MultiheadAttention(d_model, num_heads, dropout=dropout, batch_first=True)
- self.dropout = nn.Dropout(dropout)
- self.norm = nn.LayerNorm(d_model)
- # Feedforwaed Network
- self.ffn = FFN(d_model, mlp_ratio, dropout, act_type)
- def with_pos_embed(self, tensor, pos):
- return tensor if pos is None else tensor + pos
- def forward(self, src, pos_embed):
- """
- Input:
- src: [torch.Tensor] -> [B, N, C]
- pos_embed: [torch.Tensor] -> [B, N, C]
- Output:
- src: [torch.Tensor] -> [B, N, C]
- """
- q = k = self.with_pos_embed(src, pos_embed)
- # -------------- MHSA --------------
- src2 = self.self_attn(q, k, value=src)[0]
- src = src + self.dropout(src2)
- src = self.norm(src)
- # -------------- FFN --------------
- src = self.ffn(src)
-
- return src
- ## Transformer Encoder
- class TransformerEncoder(nn.Module):
- def __init__(self,
- d_model :int = 256,
- num_heads :int = 8,
- num_layers :int = 1,
- mlp_ratio :float = 4.0,
- pe_temperature : float = 10000.,
- dropout :float = 0.1,
- act_type :str = "relu",
- ):
- super().__init__()
- # ----------- Basic parameters -----------
- self.d_model = d_model
- self.num_heads = num_heads
- self.num_layers = num_layers
- self.mlp_ratio = mlp_ratio
- self.dropout = dropout
- self.act_type = act_type
- self.pe_temperature = pe_temperature
- self.pos_embed = None
- # ----------- Basic parameters -----------
- self.encoder_layers = get_clones(
- TransformerEncoderLayer(d_model, num_heads, mlp_ratio, dropout, act_type), num_layers)
- def build_2d_sincos_position_embedding(self, device, w, h, embed_dim=256, temperature=10000.):
- assert embed_dim % 4 == 0, \
- 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'
-
- # ----------- Check cahed pos_embed -----------
- if self.pos_embed is not None and \
- self.pos_embed.shape[2:] == [h, w]:
- return self.pos_embed
-
- # ----------- Generate grid coords -----------
- grid_w = torch.arange(int(w), dtype=torch.float32)
- grid_h = torch.arange(int(h), dtype=torch.float32)
- grid_w, grid_h = torch.meshgrid([grid_w, grid_h]) # shape: [H, W]
- pos_dim = embed_dim // 4
- omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
- omega = 1. / (temperature**omega)
- out_w = grid_w.flatten()[..., None] @ omega[None] # shape: [N, C]
- out_h = grid_h.flatten()[..., None] @ omega[None] # shape: [N, C]
- # shape: [1, N, C]
- pos_embed = torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h),torch.cos(out_h)], dim=1)[None, :, :]
- pos_embed = pos_embed.to(device)
- self.pos_embed = pos_embed
- return pos_embed
- def forward(self, src):
- """
- Input:
- src: [torch.Tensor] -> [B, C, H, W]
- Output:
- src: [torch.Tensor] -> [B, C, H, W]
- """
- # -------- Transformer encoder --------
- channels, fmp_h, fmp_w = src.shape[1:]
- # [B, C, H, W] -> [B, N, C], N=HxW
- src_flatten = src.flatten(2).permute(0, 2, 1)
- memory = src_flatten
- # PosEmbed: [1, N, C]
- pos_embed = self.build_2d_sincos_position_embedding(
- src.device, fmp_w, fmp_h, channels, self.pe_temperature)
-
- # Transformer Encoder layer
- for encoder in self.encoder_layers:
- memory = encoder(memory, pos_embed=pos_embed)
- # Output: [B, N, C] -> [B, C, N] -> [B, C, H, W]
- src = memory.permute(0, 2, 1).reshape([-1, channels, fmp_h, fmp_w])
- return src
- ## Transformer Decoder layer
- class PlainTransformerDecoderLayer(nn.Module):
- def __init__(self,
- d_model :int = 256,
- num_heads :int = 8,
- num_levels :int = 3,
- num_points :int = 4,
- mlp_ratio :float = 4.0,
- dropout :float = 0.1,
- act_type :str = "relu",
- ):
- super().__init__()
- # ----------- Basic parameters -----------
- self.d_model = d_model
- self.num_heads = num_heads
- self.num_levels = num_levels
- self.num_points = num_points
- self.mlp_ratio = mlp_ratio
- self.dropout = dropout
- self.act_type = act_type
- # ---------------- Network parameters ----------------
- ## Multi-head Self-Attn
- self.self_attn = nn.MultiheadAttention(d_model, num_heads, dropout=dropout)
- self.dropout1 = nn.Dropout(dropout)
- self.norm1 = nn.LayerNorm(d_model)
- ## CrossAttention
- self.cross_attn = nn.MultiheadAttention(d_model, num_heads, dropout=dropout)
- self.dropout2 = nn.Dropout(dropout)
- self.norm2 = nn.LayerNorm(d_model)
- ## FFN
- self.ffn = FFN(d_model, mlp_ratio, dropout, act_type)
- def with_pos_embed(self, tensor, pos):
- return tensor if pos is None else tensor + pos
- def forward(self,
- tgt,
- reference_points,
- memory,
- memory_spatial_shapes,
- attn_mask=None,
- memory_mask=None,
- query_pos_embed=None):
- # ---------------- MSHA for Object Query -----------------
- q = k = self.with_pos_embed(tgt, query_pos_embed)
- if attn_mask is not None:
- attn_mask = torch.where(
- attn_mask.bool(),
- torch.zeros(attn_mask.shape, dtype=tgt.dtype, device=attn_mask.device),
- torch.full(attn_mask.shape, float("-inf"), dtype=tgt.dtype, device=attn_mask.device))
- tgt2 = self.self_attn(q, k, value=tgt)[0]
- tgt = tgt + self.dropout1(tgt2)
- tgt = self.norm1(tgt)
- # ---------------- CMHA for Object Query and Image-feature -----------------
- tgt2 = self.cross_attn(self.with_pos_embed(tgt, query_pos_embed),
- reference_points,
- memory,
- memory_spatial_shapes,
- memory_mask)
- tgt = tgt + self.dropout2(tgt2)
- tgt = self.norm2(tgt)
- # ---------------- FeedForward Network -----------------
- tgt = self.ffn(tgt)
- return tgt
- ## Transformer Decoder
- class PlainTransformerDecoder(nn.Module):
- def __init__(self,
- d_model :int = 256,
- num_heads :int = 8,
- num_layers :int = 1,
- num_levels :int = 3,
- num_points :int = 4,
- mlp_ratio :float = 4.0,
- dropout :float = 0.1,
- act_type :str = "relu",
- return_intermediate :bool = False,
- ):
- super().__init__()
- # ----------- Basic parameters -----------
- self.d_model = d_model
- self.num_heads = num_heads
- self.num_layers = num_layers
- self.mlp_ratio = mlp_ratio
- self.dropout = dropout
- self.act_type = act_type
- self.pos_embed = None
- # ----------- Network parameters -----------
- self.decoder_layers = get_clones(
- TransformerDecoderLayer(d_model, num_heads, num_levels, num_points, mlp_ratio, dropout, act_type), num_layers)
- self.num_layers = num_layers
- self.return_intermediate = return_intermediate
- def forward(self,
- tgt,
- ref_points_unact,
- memory,
- memory_spatial_shapes,
- bbox_head,
- score_head,
- query_pos_head,
- attn_mask=None,
- memory_mask=None):
- output = tgt
- dec_out_bboxes = []
- dec_out_logits = []
- ref_points_detach = F.sigmoid(ref_points_unact)
- for i, layer in enumerate(self.decoder_layers):
- ref_points_input = ref_points_detach.unsqueeze(2)
- query_pos_embed = query_pos_head(ref_points_detach)
- output = layer(output, ref_points_input, memory,
- memory_spatial_shapes, attn_mask,
- memory_mask, query_pos_embed)
- inter_ref_bbox = F.sigmoid(bbox_head[i](output) + inverse_sigmoid(
- ref_points_detach))
- dec_out_logits.append(score_head[i](output))
- if i == 0:
- dec_out_bboxes.append(inter_ref_bbox)
- else:
- dec_out_bboxes.append(
- F.sigmoid(bbox_head[i](output) + inverse_sigmoid(
- ref_points)))
- ref_points = inter_ref_bbox
- ref_points_detach = inter_ref_bbox.detach()
- return torch.stack(dec_out_bboxes), torch.stack(dec_out_logits)
|