|
@@ -772,10 +772,10 @@
|
|
|
}
|
|
}
|
|
|
],
|
|
],
|
|
|
"source": [
|
|
"source": [
|
|
|
- "# 用f test检验education_num的系数是否显著\n",
|
|
|
|
|
|
|
+ "# 用f_test检验education_num的系数是否显著\n",
|
|
|
"print('检验假设education_num的系数等于0:')\n",
|
|
"print('检验假设education_num的系数等于0:')\n",
|
|
|
"print(re.f_test('education_num=0'))\n",
|
|
"print(re.f_test('education_num=0'))\n",
|
|
|
- "# 用f test检验两个假设是否同时成立\n",
|
|
|
|
|
|
|
+ "# 用f_test检验两个假设是否同时成立\n",
|
|
|
"print('检验假设education_num的系数等于0.32和hours_per_week的系数等于0.04同时成立:')\n",
|
|
"print('检验假设education_num的系数等于0.32和hours_per_week的系数等于0.04同时成立:')\n",
|
|
|
"print(re.f_test('education_num=0.32, hours_per_week=0.04'))"
|
|
"print(re.f_test('education_num=0.32, hours_per_week=0.04'))"
|
|
|
]
|
|
]
|
|
@@ -804,7 +804,7 @@
|
|
|
"pd.set_option('display.precision', 4)\n",
|
|
"pd.set_option('display.precision', 4)\n",
|
|
|
"conf = re.conf_int()\n",
|
|
"conf = re.conf_int()\n",
|
|
|
"conf['OR'] = re.params\n",
|
|
"conf['OR'] = re.params\n",
|
|
|
- "# 计算各个变量对事件发生比的影响\n",
|
|
|
|
|
|
|
+ "# 计算各个特征对事件发生比的影响\n",
|
|
|
"# conf里的三列:置信区间的下界、上界和估计值\n",
|
|
"# conf里的三列:置信区间的下界、上界和估计值\n",
|
|
|
"conf.columns = ['2.5%', '97.5%', 'OR']\n",
|
|
"conf.columns = ['2.5%', '97.5%', 'OR']\n",
|
|
|
"# 各个变量对事件发生比的影响\n",
|
|
"# 各个变量对事件发生比的影响\n",
|
|
@@ -838,7 +838,7 @@
|
|
|
}
|
|
}
|
|
|
],
|
|
],
|
|
|
"source": [
|
|
"source": [
|
|
|
- "# 计算各个变量的边际效应\n",
|
|
|
|
|
|
|
+ "# 计算各个特征的边际效应\n",
|
|
|
"print(re.get_margeff(at='overall').summary())"
|
|
"print(re.get_margeff(at='overall').summary())"
|
|
|
]
|
|
]
|
|
|
},
|
|
},
|