yolof_decoder.py 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150
  1. import math
  2. import torch
  3. import torch.nn as nn
  4. try:
  5. from .yolof_basic import BasicConv
  6. except:
  7. from yolof_basic import BasicConv
  8. class YolofDecoder(nn.Module):
  9. def __init__(self, cfg, in_dim):
  10. super().__init__()
  11. # ------------------ Basic parameters -------------------
  12. self.cfg = cfg
  13. self.in_dim = in_dim
  14. self.stride = cfg.out_stride
  15. self.num_classes = cfg.num_classes
  16. self.num_cls_head = cfg.num_cls_head
  17. self.num_reg_head = cfg.num_reg_head
  18. # Anchor config
  19. self.anchor_size = torch.as_tensor(cfg.anchor_size)
  20. self.num_anchors = len(cfg.anchor_size)
  21. # ------------------ Network parameters -------------------
  22. ## cls head
  23. cls_heads = []
  24. self.cls_head_dim = cfg.head_dim
  25. for i in range(self.num_cls_head):
  26. if i == 0:
  27. cls_heads.append(
  28. BasicConv(in_dim, self.cls_head_dim,
  29. kernel_size=3, padding=1, stride=1,
  30. act_type=cfg.head_act, norm_type=cfg.head_norm, depthwise=cfg.head_depthwise)
  31. )
  32. else:
  33. cls_heads.append(
  34. BasicConv(self.cls_head_dim, self.cls_head_dim,
  35. kernel_size=3, padding=1, stride=1,
  36. act_type=cfg.head_act, norm_type=cfg.head_norm, depthwise=cfg.head_depthwise)
  37. )
  38. ## reg head
  39. reg_heads = []
  40. self.reg_head_dim = cfg.head_dim
  41. for i in range(self.num_reg_head):
  42. if i == 0:
  43. reg_heads.append(
  44. BasicConv(in_dim, self.reg_head_dim,
  45. kernel_size=3, padding=1, stride=1,
  46. act_type=cfg.head_act, norm_type=cfg.head_norm, depthwise=cfg.head_depthwise)
  47. )
  48. else:
  49. reg_heads.append(
  50. BasicConv(self.reg_head_dim, self.reg_head_dim,
  51. kernel_size=3, padding=1, stride=1,
  52. act_type=cfg.head_act, norm_type=cfg.head_norm, depthwise=cfg.head_depthwise)
  53. )
  54. self.cls_heads = nn.Sequential(*cls_heads)
  55. self.reg_heads = nn.Sequential(*reg_heads)
  56. # pred layer
  57. self.cls_pred = nn.Conv2d(self.cls_head_dim, self.num_classes * self.num_anchors, kernel_size=1)
  58. self.reg_pred = nn.Conv2d(self.reg_head_dim, 4 * self.num_anchors, kernel_size=1)
  59. self.init_weights()
  60. def init_weights(self):
  61. # Init bias
  62. init_prob = 0.01
  63. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  64. # cls pred
  65. b = self.cls_pred.bias.view(1, -1)
  66. b.data.fill_(bias_value.item())
  67. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  68. # reg pred
  69. b = self.reg_pred.bias.view(-1, )
  70. b.data.fill_(1.0)
  71. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  72. w = self.reg_pred.weight
  73. w.data.fill_(0.)
  74. self.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
  75. def generate_anchors(self, fmp_size):
  76. """
  77. fmp_size: (List) [H, W]
  78. """
  79. # 特征图的宽和高
  80. fmp_h, fmp_w = fmp_size
  81. # 生成网格的x坐标和y坐标
  82. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  83. # 将xy两部分的坐标拼起来:[H, W, 2] -> [HW, 2]
  84. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  85. # [HW, 2] -> [HW, A, 2] -> [M, 2], M=HWA
  86. anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1)
  87. anchor_xy = anchor_xy.view(-1, 2) + 0.5
  88. anchor_xy *= self.stride
  89. # [A, 2] -> [1, A, 2] -> [HW, A, 2] -> [M, 2], M=HWA
  90. anchor_wh = self.anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1)
  91. anchor_wh = anchor_wh.view(-1, 2)
  92. anchors = torch.cat([anchor_xy, anchor_wh], dim=-1)
  93. return anchors
  94. def decode_boxes(self, anchors, reg_pred):
  95. """
  96. anchors: (List[tensor]) [1, M, 4]
  97. reg_pred: (List[tensor]) [B, M, 4]
  98. """
  99. cxcy_pred = anchors[..., :2] + reg_pred[..., :2] * self.stride
  100. bwbh_pred = anchors[..., 2:] * torch.exp(reg_pred[..., 2:])
  101. pred_x1y1 = cxcy_pred - bwbh_pred * 0.5
  102. pred_x2y2 = cxcy_pred + bwbh_pred * 0.5
  103. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  104. return box_pred
  105. def forward(self, x):
  106. # ------------------- Decoupled head -------------------
  107. cls_feats = self.cls_heads(x)
  108. reg_feats = self.reg_heads(x)
  109. # ------------------- Prediction -------------------
  110. cls_pred = self.cls_pred(cls_feats)
  111. reg_pred = self.reg_pred(reg_feats)
  112. # ------------------- Generate anchor box -------------------
  113. B, _, H, W = cls_pred.size()
  114. anchors = self.generate_anchors([H, W]) # [M, 4]
  115. anchors = anchors.to(cls_feats.device)
  116. # ------------------- Precoess preds -------------------
  117. # [B, C*A, H, W] -> [B, H, W, C*A] -> [B, H*W*A, C]
  118. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  119. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  120. ## Decode bbox
  121. box_pred = self.decode_boxes(anchors[None], reg_pred) # [B, M, 4]
  122. outputs = {"pred_cls": cls_pred, # (torch.Tensor) [B, M, C]
  123. "pred_reg": reg_pred, # (torch.Tensor) [B, M, 4]
  124. "pred_box": box_pred, # (torch.Tensor) [B, M, 4]
  125. "stride": self.stride,
  126. "anchors": anchors, # (torch.Tensor) [M, C]
  127. }
  128. return outputs