import math import torch import torch.nn as nn try: from .yolof_basic import BasicConv except: from yolof_basic import BasicConv class YolofDecoder(nn.Module): def __init__(self, cfg, in_dim): super().__init__() # ------------------ Basic parameters ------------------- self.cfg = cfg self.in_dim = in_dim self.stride = cfg.out_stride self.num_classes = cfg.num_classes self.num_cls_head = cfg.num_cls_head self.num_reg_head = cfg.num_reg_head # Anchor config self.anchor_size = torch.as_tensor(cfg.anchor_size) self.num_anchors = len(cfg.anchor_size) # ------------------ Network parameters ------------------- ## cls head cls_heads = [] self.cls_head_dim = cfg.head_dim for i in range(self.num_cls_head): if i == 0: cls_heads.append( BasicConv(in_dim, self.cls_head_dim, kernel_size=3, padding=1, stride=1, act_type=cfg.head_act, norm_type=cfg.head_norm, depthwise=cfg.head_depthwise) ) else: cls_heads.append( BasicConv(self.cls_head_dim, self.cls_head_dim, kernel_size=3, padding=1, stride=1, act_type=cfg.head_act, norm_type=cfg.head_norm, depthwise=cfg.head_depthwise) ) ## reg head reg_heads = [] self.reg_head_dim = cfg.head_dim for i in range(self.num_reg_head): if i == 0: reg_heads.append( BasicConv(in_dim, self.reg_head_dim, kernel_size=3, padding=1, stride=1, act_type=cfg.head_act, norm_type=cfg.head_norm, depthwise=cfg.head_depthwise) ) else: reg_heads.append( BasicConv(self.reg_head_dim, self.reg_head_dim, kernel_size=3, padding=1, stride=1, act_type=cfg.head_act, norm_type=cfg.head_norm, depthwise=cfg.head_depthwise) ) self.cls_heads = nn.Sequential(*cls_heads) self.reg_heads = nn.Sequential(*reg_heads) # pred layer self.cls_pred = nn.Conv2d(self.cls_head_dim, self.num_classes * self.num_anchors, kernel_size=1) self.reg_pred = nn.Conv2d(self.reg_head_dim, 4 * self.num_anchors, kernel_size=1) self.init_weights() def init_weights(self): # Init bias init_prob = 0.01 bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob)) # cls pred b = self.cls_pred.bias.view(1, -1) b.data.fill_(bias_value.item()) self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) # reg pred b = self.reg_pred.bias.view(-1, ) b.data.fill_(1.0) self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) w = self.reg_pred.weight w.data.fill_(0.) self.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True) def generate_anchors(self, fmp_size): """ fmp_size: (List) [H, W] """ # 特征图的宽和高 fmp_h, fmp_w = fmp_size # 生成网格的x坐标和y坐标 anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)]) # 将xy两部分的坐标拼起来:[H, W, 2] -> [HW, 2] anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2) # [HW, 2] -> [HW, A, 2] -> [M, 2], M=HWA anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1) anchor_xy = anchor_xy.view(-1, 2) + 0.5 anchor_xy *= self.stride # [A, 2] -> [1, A, 2] -> [HW, A, 2] -> [M, 2], M=HWA anchor_wh = self.anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1) anchor_wh = anchor_wh.view(-1, 2) anchors = torch.cat([anchor_xy, anchor_wh], dim=-1) return anchors def decode_boxes(self, anchors, reg_pred): """ anchors: (List[tensor]) [1, M, 4] reg_pred: (List[tensor]) [B, M, 4] """ cxcy_pred = anchors[..., :2] + reg_pred[..., :2] * self.stride bwbh_pred = anchors[..., 2:] * torch.exp(reg_pred[..., 2:]) pred_x1y1 = cxcy_pred - bwbh_pred * 0.5 pred_x2y2 = cxcy_pred + bwbh_pred * 0.5 box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1) return box_pred def forward(self, x): # ------------------- Decoupled head ------------------- cls_feats = self.cls_heads(x) reg_feats = self.reg_heads(x) # ------------------- Prediction ------------------- cls_pred = self.cls_pred(cls_feats) reg_pred = self.reg_pred(reg_feats) # ------------------- Generate anchor box ------------------- B, _, H, W = cls_pred.size() anchors = self.generate_anchors([H, W]) # [M, 4] anchors = anchors.to(cls_feats.device) # ------------------- Precoess preds ------------------- # [B, C*A, H, W] -> [B, H, W, C*A] -> [B, H*W*A, C] cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes) reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4) ## Decode bbox box_pred = self.decode_boxes(anchors[None], reg_pred) # [B, M, 4] outputs = {"pred_cls": cls_pred, # (torch.Tensor) [B, M, C] "pred_reg": reg_pred, # (torch.Tensor) [B, M, 4] "pred_box": box_pred, # (torch.Tensor) [B, M, 4] "stride": self.stride, "anchors": anchors, # (torch.Tensor) [M, C] } return outputs