| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- import torch
- import torch.nn.functional as F
- from utils.box_ops import bbox_iou
- from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
- from .matcher import TaskAlignedAssigner
- class SetCriterion(object):
- def __init__(self, cfg):
- # --------------- Basic parameters ---------------
- self.cfg = cfg
- self.reg_max = cfg.reg_max
- self.num_classes = cfg.num_classes
- # --------------- Loss config ---------------
- self.loss_cls_weight = cfg.loss_cls
- self.loss_box_weight = cfg.loss_box
- # --------------- Matcher config ---------------
- self.matcher = TaskAlignedAssigner(num_classes = cfg.num_classes,
- topk_candidates = cfg.tal_topk_candidates,
- alpha = cfg.tal_alpha,
- beta = cfg.tal_beta
- )
- def loss_classes(self, pred_logits, gt_score, gt_label, fg_mask):
- gt_label = torch.where(fg_mask > 0, gt_label, torch.full_like(gt_label, self.num_classes))
- one_hot_label = F.one_hot(gt_label.long(), self.num_classes + 1)[..., :-1]
- pred_score = pred_logits.sigmoid()
- weight = 0.75 * pred_score.pow(2.0) * (1 - one_hot_label) + gt_score * one_hot_label
- with torch.cuda.amp.autocast(enabled=False):
- loss_cls = F.binary_cross_entropy_with_logits(pred_logits.float(), gt_score.float(), reduction='none')
- loss_cls = loss_cls * weight
- loss_cls = loss_cls.sum()
- return loss_cls
-
- def loss_bboxes(self, pred_box, gt_box, bbox_weight):
- # regression loss
- ious = bbox_iou(pred_box, gt_box, xywh=False, GIoU=True)
- loss_box = (1.0 - ious.squeeze(-1)) * bbox_weight
- return loss_box
-
- def __call__(self, outputs, targets):
- """
- outputs['pred_cls']: List(Tensor) [B, M, C]
- outputs['pred_reg']: List(Tensor) [B, M, 4*(reg_max+1)]
- outputs['pred_box']: List(Tensor) [B, M, 4]
- outputs['anchors']: List(Tensor) [M, 2]
- outputs['strides']: List(Int) [8, 16, 32] output stride
- outputs['stride_tensor']: List(Tensor) [M, 1]
- targets: (List) [dict{'boxes': [...],
- 'labels': [...],
- 'orig_size': ...}, ...]
- """
- # preds: [B, M, C]
- cls_preds = torch.cat(outputs['pred_cls'], dim=1)
- box_preds = torch.cat(outputs['pred_box'], dim=1)
- bs, num_anchors = cls_preds.shape[:2]
- device = cls_preds.device
- anchors = torch.cat(outputs['anchors'], dim=0)
-
- # --------------- label assignment ---------------
- gt_label_targets = []
- gt_score_targets = []
- gt_bbox_targets = []
- fg_masks = []
- for bid in range(bs):
- tgt_labels = targets[bid]["labels"].to(device) # [Mp,]
- tgt_boxs = targets[bid]["boxes"].to(device) # [Mp, 4]
- if self.cfg.normalize_coords:
- img_h, img_w = outputs['image_size']
- tgt_boxs[..., [0, 2]] *= img_w
- tgt_boxs[..., [1, 3]] *= img_h
-
- if self.cfg.box_format == 'xywh':
- tgt_boxs_x1y1 = tgt_boxs[..., :2] - 0.5 * tgt_boxs[..., 2:]
- tgt_boxs_x2y2 = tgt_boxs[..., :2] + 0.5 * tgt_boxs[..., 2:]
- tgt_boxs = torch.cat([tgt_boxs_x1y1, tgt_boxs_x2y2], dim=-1)
- # check target
- if len(tgt_labels) == 0 or tgt_boxs.max().item() == 0.:
- # There is no valid gt
- fg_mask = cls_preds.new_zeros(1, num_anchors).bool() # [1, M,]
- gt_label = cls_preds.new_zeros((1, num_anchors)).long() # [1, M,]
- gt_score = cls_preds.new_zeros((1, num_anchors, self.num_classes)).float() # [1, M, C]
- gt_box = cls_preds.new_zeros((1, num_anchors, 4)).float() # [1, M, 4]
- else:
- tgt_labels = tgt_labels[None, :, None] # [1, Mp, 1]
- tgt_boxs = tgt_boxs[None] # [1, Mp, 4]
- (
- gt_label, # [1, M]
- gt_box, # [1, M, 4]
- gt_score, # [1, M, C]
- fg_mask, # [1, M,]
- _
- ) = self.matcher(
- pd_scores = cls_preds[bid:bid+1].detach().sigmoid(),
- pd_bboxes = box_preds[bid:bid+1].detach(),
- anc_points = anchors,
- gt_labels = tgt_labels,
- gt_bboxes = tgt_boxs
- )
- gt_label_targets.append(gt_label)
- gt_score_targets.append(gt_score)
- gt_bbox_targets.append(gt_box)
- fg_masks.append(fg_mask)
- # List[B, 1, M, C] -> Tensor[B, M, C] -> Tensor[BM, C]
- fg_masks = torch.cat(fg_masks, 0).view(-1) # [BM,]
- gt_label_targets = torch.cat(gt_label_targets, 0).view(-1) # [BM,]
- gt_score_targets = torch.cat(gt_score_targets, 0).view(-1, self.num_classes) # [BM, C]
- gt_bbox_targets = torch.cat(gt_bbox_targets, 0).view(-1, 4) # [BM, 4]
- num_fgs = gt_score_targets.sum()
-
- # Average loss normalizer across all the GPUs
- if is_dist_avail_and_initialized():
- torch.distributed.all_reduce(num_fgs)
- num_fgs = (num_fgs / get_world_size()).clamp(1.0)
- # ------------------ Classification loss ------------------
- cls_preds = cls_preds.view(-1, self.num_classes)
- loss_cls = self.loss_classes(cls_preds, gt_score_targets, gt_label_targets, fg_masks)
- loss_cls = loss_cls.sum() / num_fgs
- # ------------------ Regression loss ------------------
- box_preds_pos = box_preds.view(-1, 4)[fg_masks]
- box_targets_pos = gt_bbox_targets.view(-1, 4)[fg_masks]
- bbox_weight = gt_score_targets[fg_masks].sum(-1)
- loss_box = self.loss_bboxes(box_preds_pos, box_targets_pos, bbox_weight)
- loss_box = loss_box.sum() / num_fgs
- # total loss
- losses = loss_cls * self.loss_cls_weight + loss_box * self.loss_box_weight
- loss_dict = dict(
- loss_cls = loss_cls,
- loss_box = loss_box,
- losses = losses
- )
- return loss_dict
-
- if __name__ == "__main__":
- pass
|