loss.py 6.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148
  1. import torch
  2. import torch.nn.functional as F
  3. from utils.box_ops import bbox_iou
  4. from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
  5. from .matcher import TaskAlignedAssigner
  6. class SetCriterion(object):
  7. def __init__(self, cfg):
  8. # --------------- Basic parameters ---------------
  9. self.cfg = cfg
  10. self.reg_max = cfg.reg_max
  11. self.num_classes = cfg.num_classes
  12. # --------------- Loss config ---------------
  13. self.loss_cls_weight = cfg.loss_cls
  14. self.loss_box_weight = cfg.loss_box
  15. # --------------- Matcher config ---------------
  16. self.matcher = TaskAlignedAssigner(num_classes = cfg.num_classes,
  17. topk_candidates = cfg.tal_topk_candidates,
  18. alpha = cfg.tal_alpha,
  19. beta = cfg.tal_beta
  20. )
  21. def loss_classes(self, pred_logits, gt_score, gt_label, fg_mask):
  22. gt_label = torch.where(fg_mask > 0, gt_label, torch.full_like(gt_label, self.num_classes))
  23. one_hot_label = F.one_hot(gt_label.long(), self.num_classes + 1)[..., :-1]
  24. pred_score = pred_logits.sigmoid()
  25. weight = 0.75 * pred_score.pow(2.0) * (1 - one_hot_label) + gt_score * one_hot_label
  26. with torch.cuda.amp.autocast(enabled=False):
  27. loss_cls = F.binary_cross_entropy_with_logits(pred_logits.float(), gt_score.float(), reduction='none')
  28. loss_cls = loss_cls * weight
  29. loss_cls = loss_cls.sum()
  30. return loss_cls
  31. def loss_bboxes(self, pred_box, gt_box, bbox_weight):
  32. # regression loss
  33. ious = bbox_iou(pred_box, gt_box, xywh=False, GIoU=True)
  34. loss_box = (1.0 - ious.squeeze(-1)) * bbox_weight
  35. return loss_box
  36. def __call__(self, outputs, targets):
  37. """
  38. outputs['pred_cls']: List(Tensor) [B, M, C]
  39. outputs['pred_reg']: List(Tensor) [B, M, 4*(reg_max+1)]
  40. outputs['pred_box']: List(Tensor) [B, M, 4]
  41. outputs['anchors']: List(Tensor) [M, 2]
  42. outputs['strides']: List(Int) [8, 16, 32] output stride
  43. outputs['stride_tensor']: List(Tensor) [M, 1]
  44. targets: (List) [dict{'boxes': [...],
  45. 'labels': [...],
  46. 'orig_size': ...}, ...]
  47. """
  48. # preds: [B, M, C]
  49. cls_preds = torch.cat(outputs['pred_cls'], dim=1)
  50. box_preds = torch.cat(outputs['pred_box'], dim=1)
  51. bs, num_anchors = cls_preds.shape[:2]
  52. device = cls_preds.device
  53. anchors = torch.cat(outputs['anchors'], dim=0)
  54. # --------------- label assignment ---------------
  55. gt_label_targets = []
  56. gt_score_targets = []
  57. gt_bbox_targets = []
  58. fg_masks = []
  59. for bid in range(bs):
  60. tgt_labels = targets[bid]["labels"].to(device) # [Mp,]
  61. tgt_boxs = targets[bid]["boxes"].to(device) # [Mp, 4]
  62. if self.cfg.normalize_coords:
  63. img_h, img_w = outputs['image_size']
  64. tgt_boxs[..., [0, 2]] *= img_w
  65. tgt_boxs[..., [1, 3]] *= img_h
  66. if self.cfg.box_format == 'xywh':
  67. tgt_boxs_x1y1 = tgt_boxs[..., :2] - 0.5 * tgt_boxs[..., 2:]
  68. tgt_boxs_x2y2 = tgt_boxs[..., :2] + 0.5 * tgt_boxs[..., 2:]
  69. tgt_boxs = torch.cat([tgt_boxs_x1y1, tgt_boxs_x2y2], dim=-1)
  70. # check target
  71. if len(tgt_labels) == 0 or tgt_boxs.max().item() == 0.:
  72. # There is no valid gt
  73. fg_mask = cls_preds.new_zeros(1, num_anchors).bool() # [1, M,]
  74. gt_label = cls_preds.new_zeros((1, num_anchors)).long() # [1, M,]
  75. gt_score = cls_preds.new_zeros((1, num_anchors, self.num_classes)).float() # [1, M, C]
  76. gt_box = cls_preds.new_zeros((1, num_anchors, 4)).float() # [1, M, 4]
  77. else:
  78. tgt_labels = tgt_labels[None, :, None] # [1, Mp, 1]
  79. tgt_boxs = tgt_boxs[None] # [1, Mp, 4]
  80. (
  81. gt_label, # [1, M]
  82. gt_box, # [1, M, 4]
  83. gt_score, # [1, M, C]
  84. fg_mask, # [1, M,]
  85. _
  86. ) = self.matcher(
  87. pd_scores = cls_preds[bid:bid+1].detach().sigmoid(),
  88. pd_bboxes = box_preds[bid:bid+1].detach(),
  89. anc_points = anchors,
  90. gt_labels = tgt_labels,
  91. gt_bboxes = tgt_boxs
  92. )
  93. gt_label_targets.append(gt_label)
  94. gt_score_targets.append(gt_score)
  95. gt_bbox_targets.append(gt_box)
  96. fg_masks.append(fg_mask)
  97. # List[B, 1, M, C] -> Tensor[B, M, C] -> Tensor[BM, C]
  98. fg_masks = torch.cat(fg_masks, 0).view(-1) # [BM,]
  99. gt_label_targets = torch.cat(gt_label_targets, 0).view(-1) # [BM,]
  100. gt_score_targets = torch.cat(gt_score_targets, 0).view(-1, self.num_classes) # [BM, C]
  101. gt_bbox_targets = torch.cat(gt_bbox_targets, 0).view(-1, 4) # [BM, 4]
  102. num_fgs = gt_score_targets.sum()
  103. # Average loss normalizer across all the GPUs
  104. if is_dist_avail_and_initialized():
  105. torch.distributed.all_reduce(num_fgs)
  106. num_fgs = (num_fgs / get_world_size()).clamp(1.0)
  107. # ------------------ Classification loss ------------------
  108. cls_preds = cls_preds.view(-1, self.num_classes)
  109. loss_cls = self.loss_classes(cls_preds, gt_score_targets, gt_label_targets, fg_masks)
  110. loss_cls = loss_cls.sum() / num_fgs
  111. # ------------------ Regression loss ------------------
  112. box_preds_pos = box_preds.view(-1, 4)[fg_masks]
  113. box_targets_pos = gt_bbox_targets.view(-1, 4)[fg_masks]
  114. bbox_weight = gt_score_targets[fg_masks].sum(-1)
  115. loss_box = self.loss_bboxes(box_preds_pos, box_targets_pos, bbox_weight)
  116. loss_box = loss_box.sum() / num_fgs
  117. # total loss
  118. losses = loss_cls * self.loss_cls_weight + loss_box * self.loss_box_weight
  119. loss_dict = dict(
  120. loss_cls = loss_cls,
  121. loss_box = loss_box,
  122. losses = losses
  123. )
  124. return loss_dict
  125. if __name__ == "__main__":
  126. pass