| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- import torch
- import torch.nn as nn
- # ImageNet pretrained weight
- pretrained_urls = {
- "darknet19": "https://github.com/yjh0410/image_classification_pytorch/releases/download/weight/darknet19.pth",
- }
- # --------------------- Basic Module -----------------------
- class ConvModule(nn.Module):
- def __init__(self,
- in_channels: int,
- out_channels: int,
- kernel_size: int,
- padding: int = 0,
- stride: int = 1,
- dilation: int = 1,
- ):
- super(ConvModule, self).__init__()
- self.convs = nn.Sequential(
- nn.Conv2d(in_channels, out_channels, kernel_size, padding=padding, stride=stride, dilation=dilation),
- nn.BatchNorm2d(out_channels),
- nn.LeakyReLU(0.1, inplace=True)
- )
- def forward(self, x):
- return self.convs(x)
- class DarkNet19(nn.Module):
- def __init__(self, use_pretrained=False):
- super(DarkNet19, self).__init__()
- # output : stride = 2, c = 32
- self.conv_1 = nn.Sequential(
- ConvModule(3, 32, kernel_size=3, padding=1),
- nn.MaxPool2d(kernel_size=(2, 2), stride=2),
- )
- # output : stride = 4, c = 64
- self.conv_2 = nn.Sequential(
- ConvModule(32, 64, kernel_size=3, padding=1),
- nn.MaxPool2d(kernel_size=(2, 2), stride=2)
- )
- # output : stride = 8, c = 128
- self.conv_3 = nn.Sequential(
- ConvModule(64, 128, kernel_size=3, padding=1),
- ConvModule(128, 64, 1),
- ConvModule(64, 128, kernel_size=3, padding=1),
- nn.MaxPool2d(kernel_size=(2, 2), stride=2)
- )
- # output : stride = 8, c = 256
- self.conv_4 = nn.Sequential(
- ConvModule(128, 256, kernel_size=3, padding=1),
- ConvModule(256, 128, 1),
- ConvModule(128, 256, kernel_size=3, padding=1),
- )
- # output : stride = 16, c = 512
- self.maxpool_4 = nn.MaxPool2d((2, 2), 2)
- self.conv_5 = nn.Sequential(
- ConvModule(256, 512, kernel_size=3, padding=1),
- ConvModule(512, 256, 1),
- ConvModule(256, 512, kernel_size=3, padding=1),
- ConvModule(512, 256, 1),
- ConvModule(256, 512, kernel_size=3, padding=1),
- )
-
- # output : stride = 32, c = 1024
- self.maxpool_5 = nn.MaxPool2d((2, 2), 2)
- self.conv_6 = nn.Sequential(
- ConvModule(512, 1024, kernel_size=3, padding=1),
- ConvModule(1024, 512, 1),
- ConvModule(512, 1024, kernel_size=3, padding=1),
- ConvModule(1024, 512, 1),
- ConvModule(512, 1024, kernel_size=3, padding=1)
- )
- if use_pretrained:
- self.load_pretrained()
- def load_pretrained(self):
- url = pretrained_urls["darknet19"]
- if url is not None:
- print(' - Loading backbone pretrained weight from : {}'.format(url))
- # checkpoint state dict
- checkpoint_state_dict = torch.hub.load_state_dict_from_url(
- url=url, map_location="cpu", check_hash=True)
- # model state dict
- model_state_dict = self.state_dict()
- # check
- for k in list(checkpoint_state_dict.keys()):
- if k in model_state_dict:
- shape_model = tuple(model_state_dict[k].shape)
- shape_checkpoint = tuple(checkpoint_state_dict[k].shape)
- if shape_model != shape_checkpoint:
- checkpoint_state_dict.pop(k)
- else:
- checkpoint_state_dict.pop(k)
- print('Unused key: ', k)
- # load the weight
- self.load_state_dict(checkpoint_state_dict)
- else:
- print(' - No pretrained weight for darknet-19.')
- def forward(self, x):
- c1 = self.conv_1(x) # c1
- c2 = self.conv_2(c1) # c2
- c3 = self.conv_3(c2) # c3
- c3 = self.conv_4(c3) # c3
- c4 = self.conv_5(self.maxpool_4(c3)) # c4
- c5 = self.conv_6(self.maxpool_5(c4)) # c5
- return c5
- if __name__ == '__main__':
- from thop import profile
- # Build model
- model = DarkNet19(use_pretrained=True)
- # Randomly generate a input data
- x = torch.randn(2, 3, 640, 640)
- # Inference
- output = model(x)
- print(' - the shape of input : ', x.shape)
- print(' - the shape of output : ', output.shape)
- x = torch.randn(1, 3, 640, 640)
- flops, params = profile(model, inputs=(x, ), verbose=False)
- print('============== FLOPs & Params ================')
- print(' - FLOPs : {:.2f} G'.format(flops / 1e9 * 2))
- print(' - Params : {:.2f} M'.format(params / 1e6))
|