import torch import torch.nn as nn # ImageNet pretrained weight pretrained_urls = { "darknet19": "https://github.com/yjh0410/image_classification_pytorch/releases/download/weight/darknet19.pth", } # --------------------- Basic Module ----------------------- class ConvModule(nn.Module): def __init__(self, in_channels: int, out_channels: int, kernel_size: int, padding: int = 0, stride: int = 1, dilation: int = 1, ): super(ConvModule, self).__init__() self.convs = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, padding=padding, stride=stride, dilation=dilation), nn.BatchNorm2d(out_channels), nn.LeakyReLU(0.1, inplace=True) ) def forward(self, x): return self.convs(x) class DarkNet19(nn.Module): def __init__(self, use_pretrained=False): super(DarkNet19, self).__init__() # output : stride = 2, c = 32 self.conv_1 = nn.Sequential( ConvModule(3, 32, kernel_size=3, padding=1), nn.MaxPool2d(kernel_size=(2, 2), stride=2), ) # output : stride = 4, c = 64 self.conv_2 = nn.Sequential( ConvModule(32, 64, kernel_size=3, padding=1), nn.MaxPool2d(kernel_size=(2, 2), stride=2) ) # output : stride = 8, c = 128 self.conv_3 = nn.Sequential( ConvModule(64, 128, kernel_size=3, padding=1), ConvModule(128, 64, 1), ConvModule(64, 128, kernel_size=3, padding=1), nn.MaxPool2d(kernel_size=(2, 2), stride=2) ) # output : stride = 8, c = 256 self.conv_4 = nn.Sequential( ConvModule(128, 256, kernel_size=3, padding=1), ConvModule(256, 128, 1), ConvModule(128, 256, kernel_size=3, padding=1), ) # output : stride = 16, c = 512 self.maxpool_4 = nn.MaxPool2d((2, 2), 2) self.conv_5 = nn.Sequential( ConvModule(256, 512, kernel_size=3, padding=1), ConvModule(512, 256, 1), ConvModule(256, 512, kernel_size=3, padding=1), ConvModule(512, 256, 1), ConvModule(256, 512, kernel_size=3, padding=1), ) # output : stride = 32, c = 1024 self.maxpool_5 = nn.MaxPool2d((2, 2), 2) self.conv_6 = nn.Sequential( ConvModule(512, 1024, kernel_size=3, padding=1), ConvModule(1024, 512, 1), ConvModule(512, 1024, kernel_size=3, padding=1), ConvModule(1024, 512, 1), ConvModule(512, 1024, kernel_size=3, padding=1) ) if use_pretrained: self.load_pretrained() def load_pretrained(self): url = pretrained_urls["darknet19"] if url is not None: print(' - Loading backbone pretrained weight from : {}'.format(url)) # checkpoint state dict checkpoint_state_dict = torch.hub.load_state_dict_from_url( url=url, map_location="cpu", check_hash=True) # model state dict model_state_dict = self.state_dict() # check for k in list(checkpoint_state_dict.keys()): if k in model_state_dict: shape_model = tuple(model_state_dict[k].shape) shape_checkpoint = tuple(checkpoint_state_dict[k].shape) if shape_model != shape_checkpoint: checkpoint_state_dict.pop(k) else: checkpoint_state_dict.pop(k) print('Unused key: ', k) # load the weight self.load_state_dict(checkpoint_state_dict) else: print(' - No pretrained weight for darknet-19.') def forward(self, x): c1 = self.conv_1(x) # c1 c2 = self.conv_2(c1) # c2 c3 = self.conv_3(c2) # c3 c3 = self.conv_4(c3) # c3 c4 = self.conv_5(self.maxpool_4(c3)) # c4 c5 = self.conv_6(self.maxpool_5(c4)) # c5 return c5 if __name__ == '__main__': from thop import profile # Build model model = DarkNet19(use_pretrained=True) # Randomly generate a input data x = torch.randn(2, 3, 640, 640) # Inference output = model(x) print(' - the shape of input : ', x.shape) print(' - the shape of output : ', output.shape) x = torch.randn(1, 3, 640, 640) flops, params = profile(model, inputs=(x, ), verbose=False) print('============== FLOPs & Params ================') print(' - FLOPs : {:.2f} G'.format(flops / 1e9 * 2)) print(' - Params : {:.2f} M'.format(params / 1e6))