| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256 |
- import cv2
- import os
- import time
- import numpy as np
- import imageio
- import argparse
- from PIL import Image
- import torch
- # load transform
- from datasets import coco_labels, build_transform
- # load some utils
- from utils.misc import load_weight
- from utils.vis_tools import visualize
- from config import build_config
- from models.detectors import build_model
- def parse_args():
- parser = argparse.ArgumentParser(description='General Object Detection Demo')
- # Basic
- parser.add_argument('--mode', default='image',
- type=str, help='Use the data from image, video or camera')
- parser.add_argument('--cuda', action='store_true', default=False,
- help='Use cuda')
- parser.add_argument('--path_to_img', default='./dataset/demo/images/',
- type=str, help='The path to image files')
- parser.add_argument('--path_to_vid', default='dataset/demo/videos/',
- type=str, help='The path to video files')
- parser.add_argument('--path_to_save', default='det_results/demos/',
- type=str, help='The path to save the detection results')
- parser.add_argument('-vt', '--visual_threshold', default=0.3, type=float,
- help='Final confidence threshold')
- parser.add_argument('--show', action='store_true', default=False,
- help='show visualization')
- parser.add_argument('--gif', action='store_true', default=False,
- help='generate gif.')
- # Model
- parser.add_argument('-m', '--model', default='fcos_r18_1x', type=str,
- help='build detector')
- parser.add_argument('-nc', '--num_classes', default=80, type=int,
- help='number of classes.')
- parser.add_argument('--weight', default=None,
- type=str, help='Trained state_dict file path to open')
- parser.add_argument('-ct', '--conf_thresh', default=0.1, type=float,
- help='confidence threshold')
- parser.add_argument('-nt', '--nms_thresh', default=0.5, type=float,
- help='NMS threshold')
- parser.add_argument('--topk', default=100, type=int,
- help='topk candidates for testing')
- parser.add_argument("--deploy", action="store_true", default=False,
- help="deploy mode or not")
- parser.add_argument('--fuse_conv_bn', action='store_true', default=False,
- help='fuse Conv & BN')
- return parser.parse_args()
-
- def detect(args, model, device, transform, class_names, class_colors):
- # path to save
- save_path = os.path.join(args.path_to_save, args.mode)
- os.makedirs(save_path, exist_ok=True)
- # ------------------------- Camera ----------------------------
- if args.mode == 'camera':
- print('use camera !!!')
- fourcc = cv2.VideoWriter_fourcc(*'XVID')
- save_size = (640, 480)
- cur_time = time.strftime('%Y-%m-%d-%H-%M-%S',time.localtime(time.time()))
- save_video_name = os.path.join(save_path, cur_time+'.avi')
- fps = 15.0
- out = cv2.VideoWriter(save_video_name, fourcc, fps, save_size)
- print(save_video_name)
- image_list = []
- cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)
- while True:
- ret, frame = cap.read()
- if ret:
- if cv2.waitKey(1) == ord('q'):
- break
- orig_h, orig_w, _ = frame.shape
- # to PIL
- image = Image.fromarray(cv2.cvtColor(frame,cv2.COLOR_BGR2RGB))
- # prepare
- x = transform(image)[0]
- x = x.unsqueeze(0).to(device)
-
- # Inference
- t0 = time.time()
- bboxes, scores, labels = model(x)
- print("Infer. time: {}".format(time.time() - t0, "s"))
-
- # Rescale bboxes
- bboxes[..., 0::2] *= orig_w
- bboxes[..., 1::2] *= orig_h
- # vis detection
- frame_vis = visualize(frame, bboxes, scores, labels, args.visual_threshold, class_colors, class_names)
- frame_resized = cv2.resize(frame_vis, save_size)
- out.write(frame_resized)
- if args.gif:
- gif_resized = cv2.resize(frame, (640, 480))
- gif_resized_rgb = gif_resized[..., (2, 1, 0)]
- image_list.append(gif_resized_rgb)
- if args.show:
- cv2.imshow('detection', frame_resized)
- cv2.waitKey(1)
- else:
- break
- cap.release()
- out.release()
- cv2.destroyAllWindows()
- # generate GIF
- if args.gif:
- save_gif_path = os.path.join(save_path, 'gif_files')
- os.makedirs(save_gif_path, exist_ok=True)
- save_gif_name = os.path.join(save_gif_path, '{}.gif'.format(cur_time))
- print('generating GIF ...')
- imageio.mimsave(save_gif_name, image_list, fps=fps)
- print('GIF done: {}'.format(save_gif_name))
- # ------------------------- Video ---------------------------
- elif args.mode == 'video':
- video = cv2.VideoCapture(args.path_to_vid)
- fourcc = cv2.VideoWriter_fourcc(*'XVID')
- save_size = (640, 480)
- cur_time = time.strftime('%Y-%m-%d-%H-%M-%S',time.localtime(time.time()))
- save_video_name = os.path.join(save_path, cur_time+'.avi')
- fps = 15.0
- out = cv2.VideoWriter(save_video_name, fourcc, fps, save_size)
- print(save_video_name)
- image_list = []
- while(True):
- ret, frame = video.read()
-
- if ret:
- # ------------------------- Detection ---------------------------
- orig_h, orig_w, _ = frame.shape
- # to PIL
- image = Image.fromarray(cv2.cvtColor(frame,cv2.COLOR_BGR2RGB))
- # prepare
- x = transform(image)[0]
- x = x.unsqueeze(0).to(device)
-
- # Inference
- t0 = time.time()
- bboxes, scores, labels = model(x)
- print("Infer. time: {}".format(time.time() - t0, "s"))
-
- # Rescale bboxes
- bboxes[..., 0::2] *= orig_w
- bboxes[..., 1::2] *= orig_h
- # vis detection
- frame_vis = visualize(frame, bboxes, scores, labels, args.visual_threshold, class_colors, class_names)
- frame_resized = cv2.resize(frame_vis, save_size)
- out.write(frame_resized)
- if args.gif:
- gif_resized = cv2.resize(frame, (640, 480))
- gif_resized_rgb = gif_resized[..., (2, 1, 0)]
- image_list.append(gif_resized_rgb)
- if args.show:
- cv2.imshow('detection', frame_resized)
- cv2.waitKey(1)
- else:
- break
- video.release()
- out.release()
- cv2.destroyAllWindows()
- # generate GIF
- if args.gif:
- save_gif_path = os.path.join(save_path, 'gif_files')
- os.makedirs(save_gif_path, exist_ok=True)
- save_gif_name = os.path.join(save_gif_path, '{}.gif'.format(cur_time))
- print('generating GIF ...')
- imageio.mimsave(save_gif_name, image_list, fps=fps)
- print('GIF done: {}'.format(save_gif_name))
- # ------------------------- Image ----------------------------
- elif args.mode == 'image':
- for i, img_id in enumerate(os.listdir(args.path_to_img)):
- cv2_image = cv2.imread((args.path_to_img + '/' + img_id), cv2.IMREAD_COLOR)
- orig_h, orig_w, _ = cv2_image.shape
- # to PIL
- image = Image.fromarray(cv2.cvtColor(cv2_image,cv2.COLOR_BGR2RGB))
- # prepare
- x = transform(image)[0]
- x = x.unsqueeze(0).to(device)
-
- # Inference
- t0 = time.time()
- bboxes, scores, labels = model(x)
- print("Infer. time: {}".format(time.time() - t0, "s"))
-
- # Rescale bboxes
- bboxes[..., 0::2] *= orig_w
- bboxes[..., 1::2] *= orig_h
- # vis detection
- img_processed = visualize(cv2_image, bboxes, scores, labels, args.visual_threshold, class_colors, class_names)
- cv2.imwrite(os.path.join(save_path, str(i).zfill(6)+'.jpg'), img_processed)
- if args.show:
- cv2.imshow('detection', img_processed)
- cv2.waitKey(0)
- def run():
- args = parse_args()
- # cuda
- if args.cuda:
- print('use cuda')
- device = torch.device("cuda")
- else:
- device = torch.device("cpu")
- # Dataset & Model Config
- cfg = build_config(args)
- # Transform
- transform = build_transform(cfg, is_train=False)
- np.random.seed(0)
- class_colors = [(np.random.randint(255),
- np.random.randint(255),
- np.random.randint(255))
- for _ in range(args.num_classes)]
- # Model
- model = build_model(args, cfg, device, args.num_classes, False)
- model = load_weight(model, args.weight, args.fuse_conv_bn)
- model.to(device).eval()
- print("================= DETECT =================")
- # run
- detect(args, model, device, transform, coco_labels, class_colors)
- if __name__ == '__main__':
- run()
|