loss.py 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141
  1. import torch
  2. import torch.nn.functional as F
  3. from utils.box_ops import get_ious
  4. from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
  5. from .matcher import YoloxMatcher
  6. class SetCriterion(object):
  7. def __init__(self, cfg):
  8. self.cfg = cfg
  9. self.num_classes = cfg.num_classes
  10. self.loss_obj_weight = cfg.loss_obj
  11. self.loss_cls_weight = cfg.loss_cls
  12. self.loss_box_weight = cfg.loss_box
  13. # matcher
  14. self.matcher = YoloxMatcher(cfg.num_classes, cfg.ota_center_sampling_radius, cfg.ota_topk_candidate)
  15. def loss_objectness(self, pred_obj, gt_obj):
  16. loss_obj = F.binary_cross_entropy_with_logits(pred_obj, gt_obj, reduction='none')
  17. return loss_obj
  18. def loss_classes(self, pred_cls, gt_label):
  19. loss_cls = F.binary_cross_entropy_with_logits(pred_cls, gt_label, reduction='none')
  20. return loss_cls
  21. def loss_bboxes(self, pred_box, gt_box):
  22. # regression loss
  23. ious = get_ious(pred_box, gt_box, "xyxy", 'giou')
  24. loss_box = 1.0 - ious
  25. return loss_box
  26. def __call__(self, outputs, targets):
  27. """
  28. outputs['pred_obj']: List(Tensor) [B, M, 1]
  29. outputs['pred_cls']: List(Tensor) [B, M, C]
  30. outputs['pred_reg']: List(Tensor) [B, M, 4]
  31. outputs['pred_box']: List(Tensor) [B, M, 4]
  32. outputs['strides']: List(Int) [8, 16, 32] output stride
  33. targets: (List) [dict{'boxes': [...],
  34. 'labels': [...],
  35. 'orig_size': ...}, ...]
  36. """
  37. bs = outputs['pred_cls'][0].shape[0]
  38. device = outputs['pred_cls'][0].device
  39. fpn_strides = outputs['strides']
  40. anchors = outputs['anchors']
  41. # preds: [B, M, C]
  42. obj_preds = torch.cat(outputs['pred_obj'], dim=1)
  43. cls_preds = torch.cat(outputs['pred_cls'], dim=1)
  44. box_preds = torch.cat(outputs['pred_box'], dim=1)
  45. # label assignment
  46. cls_targets = []
  47. box_targets = []
  48. obj_targets = []
  49. fg_masks = []
  50. for batch_idx in range(bs):
  51. tgt_labels = targets[batch_idx]["labels"].to(device)
  52. tgt_bboxes = targets[batch_idx]["boxes"].to(device)
  53. # check target
  54. if len(tgt_labels) == 0 or tgt_bboxes.max().item() == 0.:
  55. num_anchors = sum([ab.shape[0] for ab in anchors])
  56. # There is no valid gt
  57. cls_target = obj_preds.new_zeros((0, self.num_classes))
  58. box_target = obj_preds.new_zeros((0, 4))
  59. obj_target = obj_preds.new_zeros((num_anchors, 1))
  60. fg_mask = obj_preds.new_zeros(num_anchors).bool()
  61. else:
  62. (
  63. fg_mask,
  64. assigned_labels,
  65. assigned_ious,
  66. assigned_indexs
  67. ) = self.matcher(
  68. fpn_strides = fpn_strides,
  69. anchors = anchors,
  70. pred_obj = obj_preds[batch_idx],
  71. pred_cls = cls_preds[batch_idx],
  72. pred_box = box_preds[batch_idx],
  73. tgt_labels = tgt_labels,
  74. tgt_bboxes = tgt_bboxes
  75. )
  76. obj_target = fg_mask.unsqueeze(-1)
  77. cls_target = F.one_hot(assigned_labels.long(), self.num_classes)
  78. cls_target = cls_target * assigned_ious.unsqueeze(-1)
  79. box_target = tgt_bboxes[assigned_indexs]
  80. cls_targets.append(cls_target)
  81. box_targets.append(box_target)
  82. obj_targets.append(obj_target)
  83. fg_masks.append(fg_mask)
  84. cls_targets = torch.cat(cls_targets, 0)
  85. box_targets = torch.cat(box_targets, 0)
  86. obj_targets = torch.cat(obj_targets, 0)
  87. fg_masks = torch.cat(fg_masks, 0)
  88. num_fgs = fg_masks.sum()
  89. if is_dist_avail_and_initialized():
  90. torch.distributed.all_reduce(num_fgs)
  91. num_fgs = (num_fgs / get_world_size()).clamp(1.0)
  92. # ------------------ Objecntness loss ------------------
  93. loss_obj = self.loss_objectness(obj_preds.view(-1, 1), obj_targets.float())
  94. loss_obj = loss_obj.sum() / num_fgs
  95. # ------------------ Classification loss ------------------
  96. cls_preds_pos = cls_preds.view(-1, self.num_classes)[fg_masks]
  97. loss_cls = self.loss_classes(cls_preds_pos, cls_targets)
  98. loss_cls = loss_cls.sum() / num_fgs
  99. # ------------------ Regression loss ------------------
  100. box_preds_pos = box_preds.view(-1, 4)[fg_masks]
  101. loss_box = self.loss_bboxes(box_preds_pos, box_targets)
  102. loss_box = loss_box.sum() / num_fgs
  103. # total loss
  104. losses = self.loss_obj_weight * loss_obj + \
  105. self.loss_cls_weight * loss_cls + \
  106. self.loss_box_weight * loss_box
  107. # Loss dict
  108. loss_dict = dict(
  109. loss_obj = loss_obj,
  110. loss_cls = loss_cls,
  111. loss_box = loss_box,
  112. losses = losses
  113. )
  114. return loss_dict
  115. if __name__ == "__main__":
  116. pass