| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 |
- import torch
- import torch.nn.functional as F
- from utils.box_ops import get_ious
- from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
- from .matcher import YoloxMatcher
- class SetCriterion(object):
- def __init__(self, cfg):
- self.cfg = cfg
- self.num_classes = cfg.num_classes
- self.loss_obj_weight = cfg.loss_obj
- self.loss_cls_weight = cfg.loss_cls
- self.loss_box_weight = cfg.loss_box
- # matcher
- self.matcher = YoloxMatcher(cfg.num_classes, cfg.ota_center_sampling_radius, cfg.ota_topk_candidate)
- def loss_objectness(self, pred_obj, gt_obj):
- loss_obj = F.binary_cross_entropy_with_logits(pred_obj, gt_obj, reduction='none')
- return loss_obj
-
- def loss_classes(self, pred_cls, gt_label):
- loss_cls = F.binary_cross_entropy_with_logits(pred_cls, gt_label, reduction='none')
- return loss_cls
- def loss_bboxes(self, pred_box, gt_box):
- # regression loss
- ious = get_ious(pred_box, gt_box, "xyxy", 'giou')
- loss_box = 1.0 - ious
- return loss_box
- def __call__(self, outputs, targets):
- """
- outputs['pred_obj']: List(Tensor) [B, M, 1]
- outputs['pred_cls']: List(Tensor) [B, M, C]
- outputs['pred_reg']: List(Tensor) [B, M, 4]
- outputs['pred_box']: List(Tensor) [B, M, 4]
- outputs['strides']: List(Int) [8, 16, 32] output stride
- targets: (List) [dict{'boxes': [...],
- 'labels': [...],
- 'orig_size': ...}, ...]
- """
- bs = outputs['pred_cls'][0].shape[0]
- device = outputs['pred_cls'][0].device
- fpn_strides = outputs['strides']
- anchors = outputs['anchors']
- # preds: [B, M, C]
- obj_preds = torch.cat(outputs['pred_obj'], dim=1)
- cls_preds = torch.cat(outputs['pred_cls'], dim=1)
- box_preds = torch.cat(outputs['pred_box'], dim=1)
- # label assignment
- cls_targets = []
- box_targets = []
- obj_targets = []
- fg_masks = []
- for batch_idx in range(bs):
- tgt_labels = targets[batch_idx]["labels"].to(device)
- tgt_bboxes = targets[batch_idx]["boxes"].to(device)
- # check target
- if len(tgt_labels) == 0 or tgt_bboxes.max().item() == 0.:
- num_anchors = sum([ab.shape[0] for ab in anchors])
- # There is no valid gt
- cls_target = obj_preds.new_zeros((0, self.num_classes))
- box_target = obj_preds.new_zeros((0, 4))
- obj_target = obj_preds.new_zeros((num_anchors, 1))
- fg_mask = obj_preds.new_zeros(num_anchors).bool()
- else:
- (
- fg_mask,
- assigned_labels,
- assigned_ious,
- assigned_indexs
- ) = self.matcher(
- fpn_strides = fpn_strides,
- anchors = anchors,
- pred_obj = obj_preds[batch_idx],
- pred_cls = cls_preds[batch_idx],
- pred_box = box_preds[batch_idx],
- tgt_labels = tgt_labels,
- tgt_bboxes = tgt_bboxes
- )
- obj_target = fg_mask.unsqueeze(-1)
- cls_target = F.one_hot(assigned_labels.long(), self.num_classes)
- cls_target = cls_target * assigned_ious.unsqueeze(-1)
- box_target = tgt_bboxes[assigned_indexs]
- cls_targets.append(cls_target)
- box_targets.append(box_target)
- obj_targets.append(obj_target)
- fg_masks.append(fg_mask)
- cls_targets = torch.cat(cls_targets, 0)
- box_targets = torch.cat(box_targets, 0)
- obj_targets = torch.cat(obj_targets, 0)
- fg_masks = torch.cat(fg_masks, 0)
- num_fgs = fg_masks.sum()
- if is_dist_avail_and_initialized():
- torch.distributed.all_reduce(num_fgs)
- num_fgs = (num_fgs / get_world_size()).clamp(1.0)
- # ------------------ Objecntness loss ------------------
- loss_obj = self.loss_objectness(obj_preds.view(-1, 1), obj_targets.float())
- loss_obj = loss_obj.sum() / num_fgs
-
- # ------------------ Classification loss ------------------
- cls_preds_pos = cls_preds.view(-1, self.num_classes)[fg_masks]
- loss_cls = self.loss_classes(cls_preds_pos, cls_targets)
- loss_cls = loss_cls.sum() / num_fgs
- # ------------------ Regression loss ------------------
- box_preds_pos = box_preds.view(-1, 4)[fg_masks]
- loss_box = self.loss_bboxes(box_preds_pos, box_targets)
- loss_box = loss_box.sum() / num_fgs
- # total loss
- losses = self.loss_obj_weight * loss_obj + \
- self.loss_cls_weight * loss_cls + \
- self.loss_box_weight * loss_box
- # Loss dict
- loss_dict = dict(
- loss_obj = loss_obj,
- loss_cls = loss_cls,
- loss_box = loss_box,
- losses = losses
- )
- return loss_dict
- if __name__ == "__main__":
- pass
|