import torch import torch.nn.functional as F from utils.box_ops import get_ious from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized from .matcher import YoloxMatcher class SetCriterion(object): def __init__(self, cfg): self.cfg = cfg self.num_classes = cfg.num_classes self.loss_obj_weight = cfg.loss_obj self.loss_cls_weight = cfg.loss_cls self.loss_box_weight = cfg.loss_box # matcher self.matcher = YoloxMatcher(cfg.num_classes, cfg.ota_center_sampling_radius, cfg.ota_topk_candidate) def loss_objectness(self, pred_obj, gt_obj): loss_obj = F.binary_cross_entropy_with_logits(pred_obj, gt_obj, reduction='none') return loss_obj def loss_classes(self, pred_cls, gt_label): loss_cls = F.binary_cross_entropy_with_logits(pred_cls, gt_label, reduction='none') return loss_cls def loss_bboxes(self, pred_box, gt_box): # regression loss ious = get_ious(pred_box, gt_box, "xyxy", 'giou') loss_box = 1.0 - ious return loss_box def __call__(self, outputs, targets): """ outputs['pred_obj']: List(Tensor) [B, M, 1] outputs['pred_cls']: List(Tensor) [B, M, C] outputs['pred_reg']: List(Tensor) [B, M, 4] outputs['pred_box']: List(Tensor) [B, M, 4] outputs['strides']: List(Int) [8, 16, 32] output stride targets: (List) [dict{'boxes': [...], 'labels': [...], 'orig_size': ...}, ...] """ bs = outputs['pred_cls'][0].shape[0] device = outputs['pred_cls'][0].device fpn_strides = outputs['strides'] anchors = outputs['anchors'] # preds: [B, M, C] obj_preds = torch.cat(outputs['pred_obj'], dim=1) cls_preds = torch.cat(outputs['pred_cls'], dim=1) box_preds = torch.cat(outputs['pred_box'], dim=1) # label assignment cls_targets = [] box_targets = [] obj_targets = [] fg_masks = [] for batch_idx in range(bs): tgt_labels = targets[batch_idx]["labels"].to(device) tgt_bboxes = targets[batch_idx]["boxes"].to(device) # check target if len(tgt_labels) == 0 or tgt_bboxes.max().item() == 0.: num_anchors = sum([ab.shape[0] for ab in anchors]) # There is no valid gt cls_target = obj_preds.new_zeros((0, self.num_classes)) box_target = obj_preds.new_zeros((0, 4)) obj_target = obj_preds.new_zeros((num_anchors, 1)) fg_mask = obj_preds.new_zeros(num_anchors).bool() else: ( fg_mask, assigned_labels, assigned_ious, assigned_indexs ) = self.matcher( fpn_strides = fpn_strides, anchors = anchors, pred_obj = obj_preds[batch_idx], pred_cls = cls_preds[batch_idx], pred_box = box_preds[batch_idx], tgt_labels = tgt_labels, tgt_bboxes = tgt_bboxes ) obj_target = fg_mask.unsqueeze(-1) cls_target = F.one_hot(assigned_labels.long(), self.num_classes) cls_target = cls_target * assigned_ious.unsqueeze(-1) box_target = tgt_bboxes[assigned_indexs] cls_targets.append(cls_target) box_targets.append(box_target) obj_targets.append(obj_target) fg_masks.append(fg_mask) cls_targets = torch.cat(cls_targets, 0) box_targets = torch.cat(box_targets, 0) obj_targets = torch.cat(obj_targets, 0) fg_masks = torch.cat(fg_masks, 0) num_fgs = fg_masks.sum() if is_dist_avail_and_initialized(): torch.distributed.all_reduce(num_fgs) num_fgs = (num_fgs / get_world_size()).clamp(1.0) # ------------------ Objecntness loss ------------------ loss_obj = self.loss_objectness(obj_preds.view(-1, 1), obj_targets.float()) loss_obj = loss_obj.sum() / num_fgs # ------------------ Classification loss ------------------ cls_preds_pos = cls_preds.view(-1, self.num_classes)[fg_masks] loss_cls = self.loss_classes(cls_preds_pos, cls_targets) loss_cls = loss_cls.sum() / num_fgs # ------------------ Regression loss ------------------ box_preds_pos = box_preds.view(-1, 4)[fg_masks] loss_box = self.loss_bboxes(box_preds_pos, box_targets) loss_box = loss_box.sum() / num_fgs # total loss losses = self.loss_obj_weight * loss_obj + \ self.loss_cls_weight * loss_cls + \ self.loss_box_weight * loss_box # Loss dict loss_dict = dict( loss_obj = loss_obj, loss_cls = loss_cls, loss_box = loss_box, losses = losses ) return loss_dict if __name__ == "__main__": pass