yjh0410 1c06c5c021 update 1 ano atrás
..
README.md 7baf8b2382 release YOLOv2 1 ano atrás
build.py 264112178f build a new YOLO-Tutorial project for my book 1 ano atrás
loss.py 264112178f build a new YOLO-Tutorial project for my book 1 ano atrás
matcher.py 264112178f build a new YOLO-Tutorial project for my book 1 ano atrás
resnet.py 1c06c5c021 update 1 ano atrás
yolov2.py 264112178f build a new YOLO-Tutorial project for my book 1 ano atrás
yolov2_backbone.py 264112178f build a new YOLO-Tutorial project for my book 1 ano atrás
yolov2_basic.py 1c06c5c021 update 1 ano atrás
yolov2_head.py 264112178f build a new YOLO-Tutorial project for my book 1 ano atrás
yolov2_neck.py 87d5a72477 modify init 1 ano atrás
yolov2_pred.py 606c352336 modify pred init 1 ano atrás

README.md

Redesigned YOLOv2:

  • VOC
  • COCO
Model Backbone Batch Scale APval
0.5
Weight Logs
YOLOv2 ResNet-18 1xb16 640 75.7 ckpt log
  • For training, we train redesigned YOLOv2 with 150 epochs on COCO.
  • For data augmentation, we use the SSD's augmentation, including the RandomCrop, RandomDistort, RandomExpand, RandomHFlip and so on.
  • For optimizer, we use AdamW with weight decay of 0.05 and per image base lr of 0.001 / 64.
  • For learning rate scheduler, we use cosine decay scheduler.
  • For batch size, we set it to 16, and we also use the gradient accumulation to approximate batch size of 256.

Train YOLOv2

Single GPU

Taking training YOLOv2-R18 on COCO as the example,

python train.py --cuda -d coco --root path/to/coco -m yolov2_r18 -bs 16 --fp16 

Multi GPU

Taking training YOLOv2-R18 on COCO as the example,

python -m torch.distributed.run --nproc_per_node=8 train.py --cuda --distributed -d coco --root path/to/coco -m yolov2_r18 -bs 16 --fp16 

Test YOLOv2

Taking testing YOLOv2-R18 on COCO-val as the example,

python test.py --cuda -d coco --root path/to/coco -m yolov2_r18 --weight path/to/yolov2.pth --show 

Evaluate YOLOv2

Taking evaluating YOLOv2-R18 on COCO-val as the example,

python eval.py --cuda -d coco --root path/to/coco -m yolov2_r18 --weight path/to/yolov2.pth 

Demo

Detect with Image

python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolov2_r18 --weight path/to/weight --show

Detect with Video

python demo.py --mode video --path_to_vid path/to/video --cuda -m yolov2_r18 --weight path/to/weight --show --gif

Detect with Camera

python demo.py --mode camera --cuda -m yolov2_r18 --weight path/to/weight --show --gif
Model Backbone Batch Scale APval
0.5:0.95
APval
0.5
FLOPs
(G)
Params
(M)
Weight Logs
YOLOv2 ResNet-18 1xb16 640 28.4 47.4 38.0 21.5 ckpt log