yjh0410 1 year ago
parent
commit
1c06c5c021
3 changed files with 85 additions and 102 deletions
  1. 1 1
      yolo/evaluator/custom_evaluator.py
  2. 84 22
      yolo/models/yolov2/resnet.py
  3. 0 79
      yolo/models/yolov2/yolov2_basic.py

+ 1 - 1
yolo/evaluator/custom_evaluator.py

@@ -1,7 +1,7 @@
 import json
 import tempfile
 import torch
-from yolo.dataset.custom import CustomDataset
+from dataset.custom import CustomDataset
 from utils.box_ops import rescale_bboxes
 
 try:

+ 84 - 22
yolo/models/yolov2/resnet.py

@@ -2,32 +2,104 @@ import torch
 import torch.nn as nn
 import torch.utils.model_zoo as model_zoo
 
-try:
-    from .yolov2_basic import conv1x1, BasicBlock, Bottleneck
-except:
-    from  yolov2_basic import conv1x1, BasicBlock, Bottleneck
 
 __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
            'resnet152']
 
-
 model_urls = {
-    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
-    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
-    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
+    'resnet18':  'https://download.pytorch.org/models/resnet18-5c106cde.pth',
+    'resnet34':  'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
+    'resnet50':  'https://download.pytorch.org/models/resnet50-19c8e357.pth',
     'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
     'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
 }
 
 
+# --------------------- ResNet modules ---------------------
+def conv3x3(in_planes, out_planes, stride=1):
+    """3x3 convolution with padding"""
+    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
+                     padding=1, bias=False)
+
+def conv1x1(in_planes, out_planes, stride=1):
+    """1x1 convolution"""
+    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
+
+class BasicBlock(nn.Module):
+    expansion = 1
+
+    def __init__(self, inplanes, planes, stride=1, downsample=None):
+        super(BasicBlock, self).__init__()
+        self.conv1 = conv3x3(inplanes, planes, stride)
+        self.bn1 = nn.BatchNorm2d(planes)
+        self.relu = nn.ReLU(inplace=True)
+        self.conv2 = conv3x3(planes, planes)
+        self.bn2 = nn.BatchNorm2d(planes)
+        self.downsample = downsample
+        self.stride = stride
+
+    def forward(self, x):
+        identity = x
+
+        out = self.conv1(x)
+        out = self.bn1(out)
+        out = self.relu(out)
+
+        out = self.conv2(out)
+        out = self.bn2(out)
+
+        if self.downsample is not None:
+            identity = self.downsample(x)
+
+        out += identity
+        out = self.relu(out)
+
+        return out
+
+class Bottleneck(nn.Module):
+    expansion = 4
+
+    def __init__(self, inplanes, planes, stride=1, downsample=None):
+        super(Bottleneck, self).__init__()
+        self.conv1 = conv1x1(inplanes, planes)
+        self.bn1 = nn.BatchNorm2d(planes)
+        self.conv2 = conv3x3(planes, planes, stride)
+        self.bn2 = nn.BatchNorm2d(planes)
+        self.conv3 = conv1x1(planes, planes * self.expansion)
+        self.bn3 = nn.BatchNorm2d(planes * self.expansion)
+        self.relu = nn.ReLU(inplace=True)
+        self.downsample = downsample
+        self.stride = stride
+
+    def forward(self, x):
+        identity = x
+
+        out = self.conv1(x)
+        out = self.bn1(out)
+        out = self.relu(out)
+
+        out = self.conv2(out)
+        out = self.bn2(out)
+        out = self.relu(out)
+
+        out = self.conv3(out)
+        out = self.bn3(out)
+
+        if self.downsample is not None:
+            identity = self.downsample(x)
+
+        out += identity
+        out = self.relu(out)
+
+        return out
+
+
 # --------------------- ResNet -----------------------
 class ResNet(nn.Module):
-
-    def __init__(self, block, layers, zero_init_residual=False):
+    def __init__(self, block, layers):
         super(ResNet, self).__init__()
         self.inplanes = 64
-        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
-                               bias=False)
+        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
         self.bn1 = nn.BatchNorm2d(64)
         self.relu = nn.ReLU(inplace=True)
         self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
@@ -43,16 +115,6 @@ class ResNet(nn.Module):
                 nn.init.constant_(m.weight, 1)
                 nn.init.constant_(m.bias, 0)
 
-        # Zero-initialize the last BN in each residual branch,
-        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
-        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
-        if zero_init_residual:
-            for m in self.modules():
-                if isinstance(m, Bottleneck):
-                    nn.init.constant_(m.bn3.weight, 0)
-                elif isinstance(m, BasicBlock):
-                    nn.init.constant_(m.bn2.weight, 0)
-
     def _make_layer(self, block, planes, blocks, stride=1):
         downsample = None
         if stride != 1 or self.inplanes != planes * block.expansion:

+ 0 - 79
yolo/models/yolov2/yolov2_basic.py

@@ -67,82 +67,3 @@ class BasicConv(nn.Module):
             # Pointwise conv
             x = self.act(self.norm2(self.conv2(x)))
             return x
-
-
-# --------------------- ResNet modules ---------------------
-def conv3x3(in_planes, out_planes, stride=1):
-    """3x3 convolution with padding"""
-    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
-                     padding=1, bias=False)
-
-def conv1x1(in_planes, out_planes, stride=1):
-    """1x1 convolution"""
-    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
-
-class BasicBlock(nn.Module):
-    expansion = 1
-
-    def __init__(self, inplanes, planes, stride=1, downsample=None):
-        super(BasicBlock, self).__init__()
-        self.conv1 = conv3x3(inplanes, planes, stride)
-        self.bn1 = nn.BatchNorm2d(planes)
-        self.relu = nn.ReLU(inplace=True)
-        self.conv2 = conv3x3(planes, planes)
-        self.bn2 = nn.BatchNorm2d(planes)
-        self.downsample = downsample
-        self.stride = stride
-
-    def forward(self, x):
-        identity = x
-
-        out = self.conv1(x)
-        out = self.bn1(out)
-        out = self.relu(out)
-
-        out = self.conv2(out)
-        out = self.bn2(out)
-
-        if self.downsample is not None:
-            identity = self.downsample(x)
-
-        out += identity
-        out = self.relu(out)
-
-        return out
-
-class Bottleneck(nn.Module):
-    expansion = 4
-
-    def __init__(self, inplanes, planes, stride=1, downsample=None):
-        super(Bottleneck, self).__init__()
-        self.conv1 = conv1x1(inplanes, planes)
-        self.bn1 = nn.BatchNorm2d(planes)
-        self.conv2 = conv3x3(planes, planes, stride)
-        self.bn2 = nn.BatchNorm2d(planes)
-        self.conv3 = conv1x1(planes, planes * self.expansion)
-        self.bn3 = nn.BatchNorm2d(planes * self.expansion)
-        self.relu = nn.ReLU(inplace=True)
-        self.downsample = downsample
-        self.stride = stride
-
-    def forward(self, x):
-        identity = x
-
-        out = self.conv1(x)
-        out = self.bn1(out)
-        out = self.relu(out)
-
-        out = self.conv2(out)
-        out = self.bn2(out)
-        out = self.relu(out)
-
-        out = self.conv3(out)
-        out = self.bn3(out)
-
-        if self.downsample is not None:
-            identity = self.downsample(x)
-
-        out += identity
-        out = self.relu(out)
-
-        return out