yolox2_pred.py 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130
  1. import torch
  2. import torch.nn as nn
  3. # -------------------- Detection Pred Layer --------------------
  4. ## Single-level pred layer
  5. class AFDetPredLayer(nn.Module):
  6. def __init__(self,
  7. cls_dim :int,
  8. reg_dim :int,
  9. stride :int,
  10. num_classes :int,
  11. ):
  12. super().__init__()
  13. # --------- Basic Parameters ----------
  14. self.stride = stride
  15. self.cls_dim = cls_dim
  16. self.reg_dim = reg_dim
  17. self.num_classes = num_classes
  18. # --------- Network Parameters ----------
  19. self.cls_pred = nn.Conv2d(self.cls_dim, num_classes, kernel_size=1)
  20. self.reg_pred = nn.Conv2d(self.reg_dim, 4, kernel_size=1)
  21. self.init_bias()
  22. def init_bias(self):
  23. # Init bias
  24. init_prob = 0.01
  25. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  26. # cls pred
  27. b = self.cls_pred.bias.view(1, -1)
  28. b.data.fill_(bias_value.item())
  29. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  30. # reg pred
  31. b = self.reg_pred.bias.view(-1, )
  32. b.data.fill_(1.0)
  33. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  34. def generate_anchors(self, fmp_size):
  35. """
  36. fmp_size: (List) [H, W]
  37. """
  38. fmp_h, fmp_w = fmp_size
  39. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  40. # [H, W, 2] -> [HW, 2]
  41. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  42. anchors = anchors + 0.5
  43. anchors = anchors * self.stride
  44. return anchors
  45. def forward(self, cls_feat, reg_feat):
  46. # 预测层
  47. cls_pred = self.cls_pred(cls_feat)
  48. reg_pred = self.reg_pred(reg_feat)
  49. # 生成网格坐标
  50. B, _, H, W = cls_pred.size()
  51. fmp_size = [H, W]
  52. anchors = self.generate_anchors(fmp_size)
  53. anchors = anchors.to(cls_pred.device)
  54. # 对 pred 的size做一些view调整,便于后续的处理
  55. # [B, C, H, W] -> [B, H, W, C] -> [B, H*W, C]
  56. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  57. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  58. # 解算边界框坐标
  59. cxcy_pred = reg_pred[..., :2] * self.stride + anchors
  60. bwbh_pred = torch.exp(reg_pred[..., 2:]) * self.stride
  61. pred_x1y1 = cxcy_pred - bwbh_pred * 0.5
  62. pred_x2y2 = cxcy_pred + bwbh_pred * 0.5
  63. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  64. # output dict
  65. outputs = {"pred_cls": cls_pred, # (torch.Tensor) [B, M, C]
  66. "pred_reg": reg_pred, # (torch.Tensor) [B, M, 4]
  67. "pred_box": box_pred, # (torch.Tensor) [B, M, 4]
  68. "anchors" : anchors, # (torch.Tensor) [M, 2]
  69. "fmp_size": fmp_size,
  70. "stride" : self.stride, # (Int)
  71. }
  72. return outputs
  73. ## Multi-level pred layer
  74. class Yolov5AFDetPredLayer(nn.Module):
  75. def __init__(self, cfg):
  76. super().__init__()
  77. # --------- Basic Parameters ----------
  78. self.cfg = cfg
  79. # ----------- Network Parameters -----------
  80. ## pred layers
  81. self.multi_level_preds = nn.ModuleList(
  82. [AFDetPredLayer(cls_dim = round(cfg.head_dim * cfg.width),
  83. reg_dim = round(cfg.head_dim * cfg.width),
  84. stride = cfg.out_stride[level],
  85. num_classes = cfg.num_classes,)
  86. for level in range(cfg.num_levels)
  87. ])
  88. def forward(self, cls_feats, reg_feats):
  89. all_anchors = []
  90. all_fmp_sizes = []
  91. all_cls_preds = []
  92. all_reg_preds = []
  93. all_box_preds = []
  94. for level in range(self.cfg.num_levels):
  95. # -------------- Single-level prediction --------------
  96. outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
  97. # collect results
  98. all_cls_preds.append(outputs["pred_cls"])
  99. all_reg_preds.append(outputs["pred_reg"])
  100. all_box_preds.append(outputs["pred_box"])
  101. all_fmp_sizes.append(outputs["fmp_size"])
  102. all_anchors.append(outputs["anchors"])
  103. # output dict
  104. outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  105. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
  106. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  107. "fmp_sizes": all_fmp_sizes, # List(Tensor) [M, 1]
  108. "anchors": all_anchors, # List(Tensor) [M, 2]
  109. "strides": self.cfg.out_stride, # List(Int) = [8, 16, 32]
  110. }
  111. return outputs