import torch import torch.nn as nn # -------------------- Detection Pred Layer -------------------- ## Single-level pred layer class AFDetPredLayer(nn.Module): def __init__(self, cls_dim :int, reg_dim :int, stride :int, num_classes :int, ): super().__init__() # --------- Basic Parameters ---------- self.stride = stride self.cls_dim = cls_dim self.reg_dim = reg_dim self.num_classes = num_classes # --------- Network Parameters ---------- self.cls_pred = nn.Conv2d(self.cls_dim, num_classes, kernel_size=1) self.reg_pred = nn.Conv2d(self.reg_dim, 4, kernel_size=1) self.init_bias() def init_bias(self): # Init bias init_prob = 0.01 bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob)) # cls pred b = self.cls_pred.bias.view(1, -1) b.data.fill_(bias_value.item()) self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) # reg pred b = self.reg_pred.bias.view(-1, ) b.data.fill_(1.0) self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) def generate_anchors(self, fmp_size): """ fmp_size: (List) [H, W] """ fmp_h, fmp_w = fmp_size anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)]) # [H, W, 2] -> [HW, 2] anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2) anchors = anchors + 0.5 anchors = anchors * self.stride return anchors def forward(self, cls_feat, reg_feat): # 预测层 cls_pred = self.cls_pred(cls_feat) reg_pred = self.reg_pred(reg_feat) # 生成网格坐标 B, _, H, W = cls_pred.size() fmp_size = [H, W] anchors = self.generate_anchors(fmp_size) anchors = anchors.to(cls_pred.device) # 对 pred 的size做一些view调整,便于后续的处理 # [B, C, H, W] -> [B, H, W, C] -> [B, H*W, C] cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes) reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4) # 解算边界框坐标 cxcy_pred = reg_pred[..., :2] * self.stride + anchors bwbh_pred = torch.exp(reg_pred[..., 2:]) * self.stride pred_x1y1 = cxcy_pred - bwbh_pred * 0.5 pred_x2y2 = cxcy_pred + bwbh_pred * 0.5 box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1) # output dict outputs = {"pred_cls": cls_pred, # (torch.Tensor) [B, M, C] "pred_reg": reg_pred, # (torch.Tensor) [B, M, 4] "pred_box": box_pred, # (torch.Tensor) [B, M, 4] "anchors" : anchors, # (torch.Tensor) [M, 2] "fmp_size": fmp_size, "stride" : self.stride, # (Int) } return outputs ## Multi-level pred layer class Yolov5AFDetPredLayer(nn.Module): def __init__(self, cfg): super().__init__() # --------- Basic Parameters ---------- self.cfg = cfg # ----------- Network Parameters ----------- ## pred layers self.multi_level_preds = nn.ModuleList( [AFDetPredLayer(cls_dim = round(cfg.head_dim * cfg.width), reg_dim = round(cfg.head_dim * cfg.width), stride = cfg.out_stride[level], num_classes = cfg.num_classes,) for level in range(cfg.num_levels) ]) def forward(self, cls_feats, reg_feats): all_anchors = [] all_fmp_sizes = [] all_cls_preds = [] all_reg_preds = [] all_box_preds = [] for level in range(self.cfg.num_levels): # -------------- Single-level prediction -------------- outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level]) # collect results all_cls_preds.append(outputs["pred_cls"]) all_reg_preds.append(outputs["pred_reg"]) all_box_preds.append(outputs["pred_box"]) all_fmp_sizes.append(outputs["fmp_size"]) all_anchors.append(outputs["anchors"]) # output dict outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C] "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)] "pred_box": all_box_preds, # List(Tensor) [B, M, 4] "fmp_sizes": all_fmp_sizes, # List(Tensor) [M, 1] "anchors": all_anchors, # List(Tensor) [M, 2] "strides": self.cfg.out_stride, # List(Int) = [8, 16, 32] } return outputs