| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144 |
- import torch
- import torch.nn as nn
- # ----------------- Basic CNN Ops -----------------
- def get_conv2d(c1, c2, k, p, s, g, bias=False):
- conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, groups=g, bias=bias)
- return conv
- def get_activation(act_type=None):
- if act_type == 'relu':
- return nn.ReLU(inplace=True)
- elif act_type == 'lrelu':
- return nn.LeakyReLU(0.1, inplace=True)
- elif act_type == 'mish':
- return nn.Mish(inplace=True)
- elif act_type == 'silu':
- return nn.SiLU(inplace=True)
- elif act_type == 'gelu':
- return nn.GELU()
- elif act_type is None:
- return nn.Identity()
- else:
- raise NotImplementedError
-
- def get_norm(norm_type, dim):
- if norm_type == 'BN':
- return nn.BatchNorm2d(dim)
- elif norm_type == 'GN':
- return nn.GroupNorm(num_groups=32, num_channels=dim)
- elif norm_type is None:
- return nn.Identity()
- else:
- raise NotImplementedError
- def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
- """3x3 convolution with padding"""
- return nn.Conv2d(
- in_planes,
- out_planes,
- kernel_size=3,
- stride=stride,
- padding=dilation,
- groups=groups,
- bias=False,
- dilation=dilation,
- )
- def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
- """1x1 convolution"""
- return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
- # ----------------- CNN Modules -----------------
- class BasicConv(nn.Module):
- def __init__(self,
- in_dim, # in channels
- out_dim, # out channels
- kernel_size=1, # kernel size
- padding=0, # padding
- stride=1, # padding
- act_type :str = 'lrelu', # activation
- norm_type :str = 'BN', # normalization
- depthwise :bool = False
- ):
- super(BasicConv, self).__init__()
- add_bias = False if norm_type else True
- self.depthwise = depthwise
- if not depthwise:
- self.conv = get_conv2d(in_dim, out_dim, k=kernel_size, p=padding, s=stride, g=1, bias=add_bias)
- self.norm = get_norm(norm_type, out_dim)
- else:
- self.conv1 = get_conv2d(in_dim, in_dim, k=kernel_size, p=padding, s=stride, g=1, bias=add_bias)
- self.norm1 = get_norm(norm_type, in_dim)
- self.conv2 = get_conv2d(in_dim, out_dim, k=kernel_size, p=padding, s=stride, g=1, bias=add_bias)
- self.norm2 = get_norm(norm_type, out_dim)
- self.act = get_activation(act_type)
- def forward(self, x):
- if not self.depthwise:
- return self.act(self.norm(self.conv(x)))
- else:
- # Depthwise conv
- x = self.norm1(self.conv1(x))
- # Pointwise conv
- x = self.act(self.norm2(self.conv2(x)))
- return x
- class Bottleneck(nn.Module):
- def __init__(self,
- in_dim,
- out_dim,
- expand_ratio = 0.5,
- kernel_sizes = [3, 3],
- shortcut = True,
- act_type = 'silu',
- norm_type = 'BN',
- depthwise = False,):
- super(Bottleneck, self).__init__()
- inter_dim = int(out_dim * expand_ratio)
- paddings = [k // 2 for k in kernel_sizes]
- self.cv1 = BasicConv(in_dim, inter_dim,
- kernel_size=kernel_sizes[0], padding=paddings[0],
- act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- self.cv2 = BasicConv(inter_dim, out_dim,
- kernel_size=kernel_sizes[1], padding=paddings[1],
- act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- self.shortcut = shortcut and in_dim == out_dim
- def forward(self, x):
- h = self.cv2(self.cv1(x))
- return x + h if self.shortcut else h
- class ELANLayer(nn.Module):
- def __init__(self,
- in_dim :int,
- out_dim :int,
- num_blocks :int = 1,
- expand_ratio :float = 0.5,
- shortcut :bool = False,
- act_type :str = 'silu',
- norm_type :str = 'BN',
- depthwise :bool = False,):
- super(ELANLayer, self).__init__()
- self.inter_dim = round(out_dim * expand_ratio)
- self.conv1 = BasicConv(in_dim, self.inter_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
- self.conv2 = BasicConv(in_dim, self.inter_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
- self.cmodules = nn.ModuleList([Bottleneck(self.inter_dim, self.inter_dim,
- 1.0, [3, 3], shortcut,
- act_type, norm_type, depthwise)
- for _ in range(num_blocks)])
- self.conv3 = BasicConv(self.inter_dim * (2 + num_blocks), out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
- def forward(self, x):
- x1, x2 = self.conv1(x), self.conv2(x)
- out = [x1, x2]
- for m in self.cmodules:
- x2 = m(x2)
- out.append(x2)
- return self.conv3(torch.cat(out, dim=1))
-
|