import torch import torch.nn as nn # ----------------- Basic CNN Ops ----------------- def get_conv2d(c1, c2, k, p, s, g, bias=False): conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, groups=g, bias=bias) return conv def get_activation(act_type=None): if act_type == 'relu': return nn.ReLU(inplace=True) elif act_type == 'lrelu': return nn.LeakyReLU(0.1, inplace=True) elif act_type == 'mish': return nn.Mish(inplace=True) elif act_type == 'silu': return nn.SiLU(inplace=True) elif act_type == 'gelu': return nn.GELU() elif act_type is None: return nn.Identity() else: raise NotImplementedError def get_norm(norm_type, dim): if norm_type == 'BN': return nn.BatchNorm2d(dim) elif norm_type == 'GN': return nn.GroupNorm(num_groups=32, num_channels=dim) elif norm_type is None: return nn.Identity() else: raise NotImplementedError def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d: """3x3 convolution with padding""" return nn.Conv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation, ) def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d: """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) # ----------------- CNN Modules ----------------- class BasicConv(nn.Module): def __init__(self, in_dim, # in channels out_dim, # out channels kernel_size=1, # kernel size padding=0, # padding stride=1, # padding act_type :str = 'lrelu', # activation norm_type :str = 'BN', # normalization depthwise :bool = False ): super(BasicConv, self).__init__() add_bias = False if norm_type else True self.depthwise = depthwise if not depthwise: self.conv = get_conv2d(in_dim, out_dim, k=kernel_size, p=padding, s=stride, g=1, bias=add_bias) self.norm = get_norm(norm_type, out_dim) else: self.conv1 = get_conv2d(in_dim, in_dim, k=kernel_size, p=padding, s=stride, g=1, bias=add_bias) self.norm1 = get_norm(norm_type, in_dim) self.conv2 = get_conv2d(in_dim, out_dim, k=kernel_size, p=padding, s=stride, g=1, bias=add_bias) self.norm2 = get_norm(norm_type, out_dim) self.act = get_activation(act_type) def forward(self, x): if not self.depthwise: return self.act(self.norm(self.conv(x))) else: # Depthwise conv x = self.norm1(self.conv1(x)) # Pointwise conv x = self.act(self.norm2(self.conv2(x))) return x class Bottleneck(nn.Module): def __init__(self, in_dim, out_dim, expand_ratio = 0.5, kernel_sizes = [3, 3], shortcut = True, act_type = 'silu', norm_type = 'BN', depthwise = False,): super(Bottleneck, self).__init__() inter_dim = int(out_dim * expand_ratio) paddings = [k // 2 for k in kernel_sizes] self.cv1 = BasicConv(in_dim, inter_dim, kernel_size=kernel_sizes[0], padding=paddings[0], act_type=act_type, norm_type=norm_type, depthwise=depthwise) self.cv2 = BasicConv(inter_dim, out_dim, kernel_size=kernel_sizes[1], padding=paddings[1], act_type=act_type, norm_type=norm_type, depthwise=depthwise) self.shortcut = shortcut and in_dim == out_dim def forward(self, x): h = self.cv2(self.cv1(x)) return x + h if self.shortcut else h class ELANLayer(nn.Module): def __init__(self, in_dim :int, out_dim :int, num_blocks :int = 1, expand_ratio :float = 0.5, shortcut :bool = False, act_type :str = 'silu', norm_type :str = 'BN', depthwise :bool = False,): super(ELANLayer, self).__init__() self.inter_dim = round(out_dim * expand_ratio) self.conv1 = BasicConv(in_dim, self.inter_dim, kernel_size=1, act_type=act_type, norm_type=norm_type) self.conv2 = BasicConv(in_dim, self.inter_dim, kernel_size=1, act_type=act_type, norm_type=norm_type) self.cmodules = nn.ModuleList([Bottleneck(self.inter_dim, self.inter_dim, 1.0, [3, 3], shortcut, act_type, norm_type, depthwise) for _ in range(num_blocks)]) self.conv3 = BasicConv(self.inter_dim * (2 + num_blocks), out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type) def forward(self, x): x1, x2 = self.conv1(x), self.conv2(x) out = [x1, x2] for m in self.cmodules: x2 = m(x2) out.append(x2) return self.conv3(torch.cat(out, dim=1))