yolov1_pred.py 3.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091
  1. import torch
  2. import torch.nn as nn
  3. # -------------------- Detection Pred Layer --------------------
  4. ## Single-level pred layer
  5. class Yolov1DetPredLayer(nn.Module):
  6. def __init__(self, cfg, num_classes):
  7. super().__init__()
  8. # --------- Basic Parameters ----------
  9. self.stride = cfg.out_stride
  10. self.cls_dim = cfg.head_dim
  11. self.reg_dim = cfg.head_dim
  12. # --------- Network Parameters ----------
  13. self.obj_pred = nn.Conv2d(self.cls_dim, 1, kernel_size=1)
  14. self.cls_pred = nn.Conv2d(self.cls_dim, num_classes, kernel_size=1)
  15. self.reg_pred = nn.Conv2d(self.reg_dim, 4, kernel_size=1)
  16. self.init_bias()
  17. def init_bias(self):
  18. # Init bias
  19. init_prob = 0.01
  20. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  21. # obj pred
  22. b = self.obj_pred.bias.view(1, -1)
  23. b.data.fill_(bias_value.item())
  24. self.obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  25. # cls pred
  26. b = self.cls_pred.bias.view(1, -1)
  27. b.data.fill_(bias_value.item())
  28. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  29. # reg pred
  30. b = self.reg_pred.bias.view(-1, )
  31. b.data.fill_(1.0)
  32. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  33. def generate_anchors(self, fmp_size):
  34. """
  35. fmp_size: (List) [H, W]
  36. """
  37. # 特征图的宽和高
  38. fmp_h, fmp_w = fmp_size
  39. # 生成网格的x坐标和y坐标
  40. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  41. # 将xy两部分的坐标拼起来:[H, W, 2]
  42. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float()
  43. # [H, W, 2] -> [HW, 2]
  44. anchors = anchors.view(-1, 2)
  45. return anchors
  46. def forward(self, cls_feat, reg_feat):
  47. # 预测层
  48. obj_pred = self.obj_pred(cls_feat)
  49. cls_pred = self.cls_pred(cls_feat)
  50. reg_pred = self.reg_pred(reg_feat)
  51. # 生成网格坐标
  52. B, _, H, W = cls_pred.size()
  53. fmp_size = [H, W]
  54. anchors = self.generate_anchors(fmp_size)
  55. anchors = anchors.to(cls_pred.device)
  56. # 对 pred 的size做一些view调整,便于后续的处理
  57. # [B, C, H, W] -> [B, H, W, C] -> [B, H*W, C]
  58. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
  59. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
  60. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
  61. # 解算边界框坐标
  62. cxcy_pred = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride
  63. bwbh_pred = torch.exp(reg_pred[..., 2:]) * self.stride
  64. pred_x1y1 = cxcy_pred - bwbh_pred * 0.5
  65. pred_x2y2 = cxcy_pred + bwbh_pred * 0.5
  66. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  67. # output dict
  68. outputs = {"pred_obj": obj_pred, # (torch.Tensor) [B, M, 1]
  69. "pred_cls": cls_pred, # (torch.Tensor) [B, M, C]
  70. "pred_reg": reg_pred, # (torch.Tensor) [B, M, 4]
  71. "pred_box": box_pred, # (torch.Tensor) [B, M, 4]
  72. "anchors" : anchors, # (torch.Tensor) [M, 2]
  73. "fmp_size": fmp_size,
  74. "stride" : self.stride, # (Int)
  75. }
  76. return outputs