yolov1_pred.py 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134
  1. import torch
  2. import torch.nn as nn
  3. # -------------------- Detection Pred Layer --------------------
  4. ## Single-level pred layer
  5. class Yolov1DetPredLayer(nn.Module):
  6. def __init__(self, cfg):
  7. super().__init__()
  8. # --------- Basic Parameters ----------
  9. self.stride = cfg.out_stride
  10. self.cls_dim = cfg.head_dim
  11. self.reg_dim = cfg.head_dim
  12. self.num_classes = cfg.num_classes
  13. # --------- Network Parameters ----------
  14. self.obj_pred = nn.Conv2d(self.cls_dim, 1, kernel_size=1)
  15. self.cls_pred = nn.Conv2d(self.cls_dim, self.num_classes, kernel_size=1)
  16. self.reg_pred = nn.Conv2d(self.reg_dim, 4, kernel_size=1)
  17. self.init_bias()
  18. def init_bias(self):
  19. # Init bias
  20. init_prob = 0.01
  21. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  22. # obj pred
  23. b = self.obj_pred.bias.view(1, -1)
  24. b.data.fill_(bias_value.item())
  25. self.obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  26. # cls pred
  27. b = self.cls_pred.bias.view(1, -1)
  28. b.data.fill_(bias_value.item())
  29. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  30. # reg pred
  31. b = self.reg_pred.bias.view(-1, )
  32. b.data.fill_(1.0)
  33. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  34. w = self.reg_pred.weight
  35. w.data.fill_(0.)
  36. self.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
  37. def generate_anchors(self, fmp_size):
  38. """
  39. fmp_size: (List) [H, W]
  40. """
  41. # 特征图的宽和高
  42. fmp_h, fmp_w = fmp_size
  43. # 生成网格的x坐标和y坐标
  44. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  45. # 将xy两部分的坐标拼起来:[H, W, 2]
  46. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float()
  47. # [H, W, 2] -> [HW, 2]
  48. anchors = anchors.view(-1, 2)
  49. return anchors
  50. def forward(self, cls_feat, reg_feat):
  51. # 预测层
  52. obj_pred = self.obj_pred(cls_feat)
  53. cls_pred = self.cls_pred(cls_feat)
  54. reg_pred = self.reg_pred(reg_feat)
  55. # 生成网格坐标
  56. B, _, H, W = cls_pred.size()
  57. fmp_size = [H, W]
  58. anchors = self.generate_anchors(fmp_size)
  59. anchors = anchors.to(cls_pred.device)
  60. # 对 pred 的size做一些view调整,便于后续的处理
  61. # [B, C, H, W] -> [B, H, W, C] -> [B, H*W, C]
  62. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
  63. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
  64. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
  65. # 解算边界框坐标
  66. cxcy_pred = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride
  67. bwbh_pred = torch.exp(reg_pred[..., 2:]) * self.stride
  68. pred_x1y1 = cxcy_pred - bwbh_pred * 0.5
  69. pred_x2y2 = cxcy_pred + bwbh_pred * 0.5
  70. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  71. # output dict
  72. outputs = {"pred_obj": obj_pred, # (torch.Tensor) [B, M, 1]
  73. "pred_cls": cls_pred, # (torch.Tensor) [B, M, C]
  74. "pred_reg": reg_pred, # (torch.Tensor) [B, M, 4]
  75. "pred_box": box_pred, # (torch.Tensor) [B, M, 4]
  76. "anchors" : anchors, # (torch.Tensor) [M, 2]
  77. "fmp_size": fmp_size,
  78. "stride" : self.stride, # (Int)
  79. }
  80. return outputs
  81. if __name__=='__main__':
  82. import time
  83. from thop import profile
  84. # Model config
  85. # YOLOv8-Base config
  86. class Yolov1BaseConfig(object):
  87. def __init__(self) -> None:
  88. # ---------------- Model config ----------------
  89. self.out_stride = 32
  90. self.max_stride = 32
  91. ## Head
  92. self.head_dim = 512
  93. cfg = Yolov1BaseConfig()
  94. cfg.num_classes = 20
  95. # Build a pred layer
  96. pred = Yolov1DetPredLayer(cfg)
  97. # Inference
  98. cls_feat = torch.randn(1, cfg.head_dim, 20, 20)
  99. reg_feat = torch.randn(1, cfg.head_dim, 20, 20)
  100. t0 = time.time()
  101. output = pred(cls_feat, reg_feat)
  102. t1 = time.time()
  103. print('Time: ', t1 - t0)
  104. print('====== Pred output ======= ')
  105. for k in output:
  106. if isinstance(output[k], torch.Tensor):
  107. print("-{}: ".format(k), output[k].shape)
  108. else:
  109. print("-{}: ".format(k), output[k])
  110. flops, params = profile(pred, inputs=(cls_feat, reg_feat, ), verbose=False)
  111. print('==============================')
  112. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  113. print('Params : {:.2f} M'.format(params / 1e6))