import torch import torch.nn as nn # -------------------- Detection Pred Layer -------------------- ## Single-level pred layer class Yolov1DetPredLayer(nn.Module): def __init__(self, cfg): super().__init__() # --------- Basic Parameters ---------- self.stride = cfg.out_stride self.cls_dim = cfg.head_dim self.reg_dim = cfg.head_dim self.num_classes = cfg.num_classes # --------- Network Parameters ---------- self.obj_pred = nn.Conv2d(self.cls_dim, 1, kernel_size=1) self.cls_pred = nn.Conv2d(self.cls_dim, self.num_classes, kernel_size=1) self.reg_pred = nn.Conv2d(self.reg_dim, 4, kernel_size=1) self.init_bias() def init_bias(self): # Init bias init_prob = 0.01 bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob)) # obj pred b = self.obj_pred.bias.view(1, -1) b.data.fill_(bias_value.item()) self.obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) # cls pred b = self.cls_pred.bias.view(1, -1) b.data.fill_(bias_value.item()) self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) # reg pred b = self.reg_pred.bias.view(-1, ) b.data.fill_(1.0) self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) w = self.reg_pred.weight w.data.fill_(0.) self.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True) def generate_anchors(self, fmp_size): """ fmp_size: (List) [H, W] """ # 特征图的宽和高 fmp_h, fmp_w = fmp_size # 生成网格的x坐标和y坐标 anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)]) # 将xy两部分的坐标拼起来:[H, W, 2] anchors = torch.stack([anchor_x, anchor_y], dim=-1).float() # [H, W, 2] -> [HW, 2] anchors = anchors.view(-1, 2) return anchors def forward(self, cls_feat, reg_feat): # 预测层 obj_pred = self.obj_pred(cls_feat) cls_pred = self.cls_pred(cls_feat) reg_pred = self.reg_pred(reg_feat) # 生成网格坐标 B, _, H, W = cls_pred.size() fmp_size = [H, W] anchors = self.generate_anchors(fmp_size) anchors = anchors.to(cls_pred.device) # 对 pred 的size做一些view调整,便于后续的处理 # [B, C, H, W] -> [B, H, W, C] -> [B, H*W, C] obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2) cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2) reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2) # 解算边界框坐标 cxcy_pred = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride bwbh_pred = torch.exp(reg_pred[..., 2:]) * self.stride pred_x1y1 = cxcy_pred - bwbh_pred * 0.5 pred_x2y2 = cxcy_pred + bwbh_pred * 0.5 box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1) # output dict outputs = {"pred_obj": obj_pred, # (torch.Tensor) [B, M, 1] "pred_cls": cls_pred, # (torch.Tensor) [B, M, C] "pred_reg": reg_pred, # (torch.Tensor) [B, M, 4] "pred_box": box_pred, # (torch.Tensor) [B, M, 4] "anchors" : anchors, # (torch.Tensor) [M, 2] "fmp_size": fmp_size, "stride" : self.stride, # (Int) } return outputs if __name__=='__main__': import time from thop import profile # Model config # YOLOv8-Base config class Yolov1BaseConfig(object): def __init__(self) -> None: # ---------------- Model config ---------------- self.out_stride = 32 self.max_stride = 32 ## Head self.head_dim = 512 cfg = Yolov1BaseConfig() cfg.num_classes = 20 # Build a pred layer pred = Yolov1DetPredLayer(cfg) # Inference cls_feat = torch.randn(1, cfg.head_dim, 20, 20) reg_feat = torch.randn(1, cfg.head_dim, 20, 20) t0 = time.time() output = pred(cls_feat, reg_feat) t1 = time.time() print('Time: ', t1 - t0) print('====== Pred output ======= ') for k in output: if isinstance(output[k], torch.Tensor): print("-{}: ".format(k), output[k].shape) else: print("-{}: ".format(k), output[k]) flops, params = profile(pred, inputs=(cls_feat, reg_feat, ), verbose=False) print('==============================') print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2)) print('Params : {:.2f} M'.format(params / 1e6))