yolov2_basic.py 2.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869
  1. import torch
  2. import torch.nn as nn
  3. from typing import List
  4. # --------------------- Basic modules ---------------------
  5. def get_conv2d(c1, c2, k, p, s, d, g, bias=False):
  6. conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, dilation=d, groups=g, bias=bias)
  7. return conv
  8. def get_activation(act_type=None):
  9. if act_type == 'relu':
  10. return nn.ReLU(inplace=True)
  11. elif act_type == 'lrelu':
  12. return nn.LeakyReLU(0.1, inplace=True)
  13. elif act_type == 'mish':
  14. return nn.Mish(inplace=True)
  15. elif act_type == 'silu':
  16. return nn.SiLU(inplace=True)
  17. elif act_type is None:
  18. return nn.Identity()
  19. else:
  20. raise NotImplementedError
  21. def get_norm(norm_type, dim):
  22. if norm_type == 'BN':
  23. return nn.BatchNorm2d(dim)
  24. elif norm_type == 'GN':
  25. return nn.GroupNorm(num_groups=32, num_channels=dim)
  26. elif norm_type is None:
  27. return nn.Identity()
  28. else:
  29. raise NotImplementedError
  30. class BasicConv(nn.Module):
  31. def __init__(self,
  32. in_dim, # in channels
  33. out_dim, # out channels
  34. kernel_size=1, # kernel size
  35. padding=0, # padding
  36. stride=1, # padding
  37. dilation=1, # dilation
  38. act_type :str = 'lrelu', # activation
  39. norm_type :str = 'BN', # normalization
  40. depthwise :bool = False
  41. ):
  42. super(BasicConv, self).__init__()
  43. self.depthwise = depthwise
  44. use_bias = False if norm_type is not None else True
  45. if not depthwise:
  46. self.conv = get_conv2d(in_dim, out_dim, k=kernel_size, p=padding, s=stride, d=dilation, g=1, bias=use_bias)
  47. self.norm = get_norm(norm_type, out_dim)
  48. else:
  49. self.conv1 = get_conv2d(in_dim, in_dim, k=kernel_size, p=padding, s=stride, d=dilation, g=in_dim, bias=use_bias)
  50. self.norm1 = get_norm(norm_type, in_dim)
  51. self.conv2 = get_conv2d(in_dim, out_dim, k=1, p=0, s=1, d=1, g=1)
  52. self.norm2 = get_norm(norm_type, out_dim)
  53. self.act = get_activation(act_type)
  54. def forward(self, x):
  55. if not self.depthwise:
  56. return self.act(self.norm(self.conv(x)))
  57. else:
  58. # Depthwise conv
  59. x = self.norm1(self.conv1(x))
  60. # Pointwise conv
  61. x = self.act(self.norm2(self.conv2(x)))
  62. return x