| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214 |
- import numpy as np
- import torch
- class Yolov5Matcher(object):
- def __init__(self, num_classes, num_anchors, anchor_size, anchor_theshold):
- self.num_classes = num_classes
- self.num_anchors = num_anchors
- self.anchor_theshold = anchor_theshold
- # [KA, 2]
- self.anchor_sizes = np.array([[anchor[0], anchor[1]]
- for anchor in anchor_size])
- # [KA, 4]
- self.anchor_boxes = np.array([[0., 0., anchor[0], anchor[1]]
- for anchor in anchor_size])
- def compute_iou(self, anchor_boxes, gt_box):
- """
- anchor_boxes : ndarray -> [KA, 4] (cx, cy, bw, bh).
- gt_box : ndarray -> [1, 4] (cx, cy, bw, bh).
- """
- # anchors: [KA, 4]
- anchors_xyxy = np.zeros_like(anchor_boxes)
- anchors_area = anchor_boxes[..., 2] * anchor_boxes[..., 3]
- # convert [cx, cy, bw, bh] -> [x1, y1, x2, y2]
- anchors_xyxy[..., :2] = anchor_boxes[..., :2] - anchor_boxes[..., 2:] * 0.5 # x1y1
- anchors_xyxy[..., 2:] = anchor_boxes[..., :2] + anchor_boxes[..., 2:] * 0.5 # x2y2
-
- # expand gt_box: [1, 4] -> [KA, 4]
- gt_box = np.array(gt_box).reshape(-1, 4)
- gt_box = np.repeat(gt_box, anchors_xyxy.shape[0], axis=0)
- gt_box_area = gt_box[..., 2] * gt_box[..., 3]
- # convert [cx, cy, bw, bh] -> [x1, y1, x2, y2]
- gt_box_xyxy = np.zeros_like(gt_box)
- gt_box_xyxy[..., :2] = gt_box[..., :2] - gt_box[..., 2:] * 0.5 # x1y1
- gt_box_xyxy[..., 2:] = gt_box[..., :2] + gt_box[..., 2:] * 0.5 # x2y2
- # intersection
- inter_w = np.minimum(anchors_xyxy[:, 2], gt_box_xyxy[:, 2]) - \
- np.maximum(anchors_xyxy[:, 0], gt_box_xyxy[:, 0])
- inter_h = np.minimum(anchors_xyxy[:, 3], gt_box_xyxy[:, 3]) - \
- np.maximum(anchors_xyxy[:, 1], gt_box_xyxy[:, 1])
- inter_area = inter_w * inter_h
-
- # union
- union_area = anchors_area + gt_box_area - inter_area
- # iou
- iou = inter_area / union_area
- iou = np.clip(iou, a_min=1e-10, a_max=1.0)
-
- return iou
- def iou_assignment(self, ctr_points, gt_box, fpn_strides):
- # compute IoU
- iou = self.compute_iou(self.anchor_boxes, gt_box)
- iou_mask = (iou > 0.5)
- label_assignment_results = []
- if iou_mask.sum() == 0:
- # We assign the anchor box with highest IoU score.
- iou_ind = np.argmax(iou)
- level = iou_ind // self.num_anchors # pyramid level
- anchor_idx = iou_ind - level * self.num_anchors # anchor index
- # get the corresponding stride
- stride = fpn_strides[level]
- # compute the grid cell
- xc, yc = ctr_points
- xc_s = xc / stride
- yc_s = yc / stride
- grid_x = int(xc_s)
- grid_y = int(yc_s)
- label_assignment_results.append([grid_x, grid_y, xc_s, yc_s, level, anchor_idx])
- else:
- for iou_ind, iou_m in enumerate(iou_mask):
- if iou_m:
- level = iou_ind // self.num_anchors # pyramid level
- anchor_idx = iou_ind - level * self.num_anchors # anchor index
- # get the corresponding stride
- stride = fpn_strides[level]
- # compute the gride cell
- xc, yc = ctr_points
- xc_s = xc / stride
- yc_s = yc / stride
- grid_x = int(xc_s)
- grid_y = int(yc_s)
- label_assignment_results.append([grid_x, grid_y, xc_s, yc_s, level, anchor_idx])
- return label_assignment_results
- def aspect_ratio_assignment(self, ctr_points, keeps, fpn_strides):
- label_assignment_results = []
- for keep_idx, keep in enumerate(keeps):
- if keep:
- level = keep_idx // self.num_anchors # pyramid level
- anchor_idx = keep_idx - level * self.num_anchors # anchor index
- # get the corresponding stride
- stride = fpn_strides[level]
- # compute the gride cell
- xc, yc = ctr_points
- xc_s = xc / stride
- yc_s = yc / stride
- grid_x = int(xc_s)
- grid_y = int(yc_s)
- label_assignment_results.append([grid_x, grid_y, xc_s, yc_s, level, anchor_idx])
-
- return label_assignment_results
-
- @torch.no_grad()
- def __call__(self, fmp_sizes, fpn_strides, targets):
- """
- fmp_size: (List) [fmp_h, fmp_w]
- fpn_strides: (List) -> [8, 16, 32, ...] stride of network output.
- targets: (Dict) dict{'boxes': [...],
- 'labels': [...],
- 'orig_size': ...}
- """
- assert len(fmp_sizes) == len(fpn_strides)
- # prepare
- bs = len(targets)
- gt_objectness = [
- torch.zeros([bs, fmp_h, fmp_w, self.num_anchors, 1])
- for (fmp_h, fmp_w) in fmp_sizes
- ]
- gt_classes = [
- torch.zeros([bs, fmp_h, fmp_w, self.num_anchors, self.num_classes])
- for (fmp_h, fmp_w) in fmp_sizes
- ]
- gt_bboxes = [
- torch.zeros([bs, fmp_h, fmp_w, self.num_anchors, 4])
- for (fmp_h, fmp_w) in fmp_sizes
- ]
- for batch_index in range(bs):
- targets_per_image = targets[batch_index]
- # [N,]
- tgt_cls = targets_per_image["labels"].numpy()
- # [N, 4]
- tgt_box = targets_per_image['boxes'].numpy()
- for gt_box, gt_label in zip(tgt_box, tgt_cls):
- # get a bbox coords
- x1, y1, x2, y2 = gt_box.tolist()
- # xyxy -> cxcywh
- xc, yc = (x2 + x1) * 0.5, (y2 + y1) * 0.5
- bw, bh = x2 - x1, y2 - y1
- gt_box = np.array([[0., 0., bw, bh]])
- # check target
- if bw < 1. or bh < 1.:
- # invalid target
- continue
- # compute aspect ratio
- ratios = gt_box[..., 2:] / self.anchor_sizes
- keeps = np.maximum(ratios, 1 / ratios).max(-1) < self.anchor_theshold
- if keeps.sum() == 0:
- label_assignment_results = self.iou_assignment([xc, yc], gt_box, fpn_strides)
- else:
- label_assignment_results = self.aspect_ratio_assignment([xc, yc], keeps, fpn_strides)
- # label assignment
- for result in label_assignment_results:
- # assignment
- grid_x, grid_y, xc_s, yc_s, level, anchor_idx = result
- stride = fpn_strides[level]
- fmp_h, fmp_w = fmp_sizes[level]
- # coord on the feature
- x1s, y1s = x1 / stride, y1 / stride
- x2s, y2s = x2 / stride, y2 / stride
- # offset
- off_x = xc_s - grid_x
- off_y = yc_s - grid_y
-
- if off_x <= 0.5 and off_y <= 0.5: # top left
- grids = [(grid_x-1, grid_y), (grid_x, grid_y-1), (grid_x, grid_y)]
- elif off_x > 0.5 and off_y <= 0.5: # top right
- grids = [(grid_x+1, grid_y), (grid_x, grid_y-1), (grid_x, grid_y)]
- elif off_x <= 0.5 and off_y > 0.5: # bottom left
- grids = [(grid_x-1, grid_y), (grid_x, grid_y+1), (grid_x, grid_y)]
- elif off_x > 0.5 and off_y > 0.5: # bottom right
- grids = [(grid_x+1, grid_y), (grid_x, grid_y+1), (grid_x, grid_y)]
- for (i, j) in grids:
- is_in_box = (j >= y1s and j < y2s) and (i >= x1s and i < x2s)
- is_valid = (j >= 0 and j < fmp_h) and (i >= 0 and i < fmp_w)
- if is_in_box and is_valid:
- # obj
- gt_objectness[level][batch_index, j, i, anchor_idx] = 1.0
- # cls
- cls_ont_hot = torch.zeros(self.num_classes)
- cls_ont_hot[int(gt_label)] = 1.0
- gt_classes[level][batch_index, j, i, anchor_idx] = cls_ont_hot
- # box
- gt_bboxes[level][batch_index, j, i, anchor_idx] = torch.as_tensor([x1, y1, x2, y2])
- # [B, M, C]
- gt_objectness = torch.cat([gt.view(bs, -1, 1) for gt in gt_objectness], dim=1).float()
- gt_classes = torch.cat([gt.view(bs, -1, self.num_classes) for gt in gt_classes], dim=1).float()
- gt_bboxes = torch.cat([gt.view(bs, -1, 4) for gt in gt_bboxes], dim=1).float()
- return gt_objectness, gt_classes, gt_bboxes
|